正特征格点的有效等分布

IF 0.3 4区 数学 Q4 MATHEMATICS
Tal Horesh, F. Paulin
{"title":"正特征格点的有效等分布","authors":"Tal Horesh, F. Paulin","doi":"10.5802/jtnb.1222","DOIUrl":null,"url":null,"abstract":"Given a place $\\omega$ of a global function field $K$ over a finite field, with associated affine function ring $R_\\omega$ and completion $K_\\omega$, the aim of this paper is to give an effective joint equidistribution result for renormalized primitive lattice points $(a,b)\\in {R_\\omega}^2$ in the plane ${K_\\omega}^2$, and for renormalized solutions to the gcd equation $ax+by=1$. The main tools are techniques of Goronik and Nevo for counting lattice points in well-rounded families of subsets. This gives a sharper analog in positive characteristic of a result of Nevo and the first author for the equidistribution of the primitive lattice points in $\\ZZ^2$.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective equidistribution of lattice points in positive characteristic\",\"authors\":\"Tal Horesh, F. Paulin\",\"doi\":\"10.5802/jtnb.1222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a place $\\\\omega$ of a global function field $K$ over a finite field, with associated affine function ring $R_\\\\omega$ and completion $K_\\\\omega$, the aim of this paper is to give an effective joint equidistribution result for renormalized primitive lattice points $(a,b)\\\\in {R_\\\\omega}^2$ in the plane ${K_\\\\omega}^2$, and for renormalized solutions to the gcd equation $ax+by=1$. The main tools are techniques of Goronik and Nevo for counting lattice points in well-rounded families of subsets. This gives a sharper analog in positive characteristic of a result of Nevo and the first author for the equidistribution of the primitive lattice points in $\\\\ZZ^2$.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1222\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1222","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定有限域上的全局函数域$K$中的一个位置$\ ω $,与之相关联的仿射函数环$R_\ ω $和补全$K_\ ω $,本文的目的是给出平面${K_\ ω}^2$中{R_\ ω}^2$中重整化原始格点$(a,b)的有效联合均分结果,以及gcd方程$ax+by=1$的重整化解。主要的工具是Goronik和Nevo的技术,用于在完整的子集族中计算格点。这在正特性上更接近Nevo和第一作者关于$\ZZ^2$中原始晶格点的均分的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective equidistribution of lattice points in positive characteristic
Given a place $\omega$ of a global function field $K$ over a finite field, with associated affine function ring $R_\omega$ and completion $K_\omega$, the aim of this paper is to give an effective joint equidistribution result for renormalized primitive lattice points $(a,b)\in {R_\omega}^2$ in the plane ${K_\omega}^2$, and for renormalized solutions to the gcd equation $ax+by=1$. The main tools are techniques of Goronik and Nevo for counting lattice points in well-rounded families of subsets. This gives a sharper analog in positive characteristic of a result of Nevo and the first author for the equidistribution of the primitive lattice points in $\ZZ^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信