基于粒子群优化神经网络和自适应趋近律的滑模控制

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Jiqing Chen, Haiyan Zhang, Shangtao Pan, Qingsong Tang
{"title":"基于粒子群优化神经网络和自适应趋近律的滑模控制","authors":"Jiqing Chen, Haiyan Zhang, Shangtao Pan, Qingsong Tang","doi":"10.1177/01423312231186214","DOIUrl":null,"url":null,"abstract":"This paper presents a sliding mode control based on particle swarm optimization neural network and adaptive reaching law, and the proposed control method solves the problem of chattering and tracking performance degradation of a multi-joint manipulator caused by uncertainties such as external disturbances and modeling error. First, to address the problem that the precise dynamic system of the manipulator is difficult to establish, the radial basis function neural network (RBFNN) is used to approximate the uncertainty of the manipulator model, and the parameters of the neural network are optimized through the adaptive natural selection particle swarm optimization algorithm (ASelPSO) to improve the approximation ability and reduce the approximation error. Second, to eliminate chattering, adaptive reaching law is selected to improve the dynamic quality of approaching motion. Finally, a comparative simulation experiment is carried out with a 3-DOF manipulator as the research object. The results show that the control method has obvious improvements in eliminating chattering, improving tracking accuracy, and increasing convergence speed, which verifies the feasibility and superiority of the control scheme.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding mode control based on particle swarm optimization neural network and adaptive reaching law\",\"authors\":\"Jiqing Chen, Haiyan Zhang, Shangtao Pan, Qingsong Tang\",\"doi\":\"10.1177/01423312231186214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a sliding mode control based on particle swarm optimization neural network and adaptive reaching law, and the proposed control method solves the problem of chattering and tracking performance degradation of a multi-joint manipulator caused by uncertainties such as external disturbances and modeling error. First, to address the problem that the precise dynamic system of the manipulator is difficult to establish, the radial basis function neural network (RBFNN) is used to approximate the uncertainty of the manipulator model, and the parameters of the neural network are optimized through the adaptive natural selection particle swarm optimization algorithm (ASelPSO) to improve the approximation ability and reduce the approximation error. Second, to eliminate chattering, adaptive reaching law is selected to improve the dynamic quality of approaching motion. Finally, a comparative simulation experiment is carried out with a 3-DOF manipulator as the research object. The results show that the control method has obvious improvements in eliminating chattering, improving tracking accuracy, and increasing convergence speed, which verifies the feasibility and superiority of the control scheme.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231186214\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312231186214","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于粒子群优化神经网络和自适应趋近律的滑模控制方法,该控制方法解决了由于外部扰动和建模误差等不确定性导致多关节机械手抖振和跟踪性能下降的问题。首先,针对机械手精确动力学系统难以建立的问题,采用径向基函数神经网络(RBFNN)对机械手模型的不确定性进行近似,并通过自适应自然选择粒子群优化算法(ASelPSO)对神经网络的参数进行优化,以提高逼近能力,降低逼近误差。其次,为了消除抖振,选择自适应趋近律来提高趋近运动的动态质量。最后,以一个三自由度机械手为研究对象进行了对比仿真实验。结果表明,该控制方法在消除抖振、提高跟踪精度、提高收敛速度等方面有明显的改进,验证了控制方案的可行性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding mode control based on particle swarm optimization neural network and adaptive reaching law
This paper presents a sliding mode control based on particle swarm optimization neural network and adaptive reaching law, and the proposed control method solves the problem of chattering and tracking performance degradation of a multi-joint manipulator caused by uncertainties such as external disturbances and modeling error. First, to address the problem that the precise dynamic system of the manipulator is difficult to establish, the radial basis function neural network (RBFNN) is used to approximate the uncertainty of the manipulator model, and the parameters of the neural network are optimized through the adaptive natural selection particle swarm optimization algorithm (ASelPSO) to improve the approximation ability and reduce the approximation error. Second, to eliminate chattering, adaptive reaching law is selected to improve the dynamic quality of approaching motion. Finally, a comparative simulation experiment is carried out with a 3-DOF manipulator as the research object. The results show that the control method has obvious improvements in eliminating chattering, improving tracking accuracy, and increasing convergence speed, which verifies the feasibility and superiority of the control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
203
审稿时长
3.4 months
期刊介绍: Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信