论牛顿运动中的潮汐能

IF 1.8 2区 数学 Q1 MATHEMATICS
Shuang Miao, S. Shahshahani
{"title":"论牛顿运动中的潮汐能","authors":"Shuang Miao, S. Shahshahani","doi":"10.4310/cjm.2019.v7.n4.a2","DOIUrl":null,"url":null,"abstract":"In this work, which is based on an essential linear analysis carried out by Christodoulou, we study the evolution of tidal energy for the motion of two gravitating incompressible fluid balls with free boundaries obeying the Euler-Poisson equations. The orbital energy is defined as the mechanical energy of the two bodies' center of mass. According to the classical analysis of Kepler and Newton, when the fluids are replaced by point masses, the conic curve describing the trajectories of the masses is a hyperbola when the orbital energy is positive and an ellipse when the orbital energy is negative. The orbital energy is conserved in the case of point masses. If the point masses are initially very far, then the orbital energy is positive, corresponding to hyperbolic motion. However, in the motion of fluid bodies the orbital energy is no longer conserved because part of the conserved energy is used in deforming the boundaries of the bodies. In this case the total energy $\\tilde{\\mathcal{E}}$ can be decomposed into a sum $\\tilde{\\mathcal{E}}:=\\widetilde{\\mathcal{E}_{{\\mathrm{orbital}}}}+\\widetilde{\\mathcal{E}_{{\\mathrm{tidal}}}}$, with $\\widetilde{\\mathcal{E}_{{\\mathrm{tidal}}}}$ measuring the energy used in deforming the boundaries, such that if $\\widetilde{\\mathcal{E}_{{\\mathrm{orbital}}}} 0$, then the orbit of the bodies must be bounded. In this work we prove that under appropriate conditions on the initial configuration of the system, the fluid boundaries and velocity remain regular up to the point of the first closest approach in the orbit, and that the tidal energy $\\widetilde{\\mathcal{E}_{{\\mathrm{tidal}}}}$ can be made arbitrarily large relative to the total energy $\\tilde{\\mathcal{E}}$. In particular under these conditions $\\widetilde{\\mathcal{E}_{{\\mathrm{orbital}}}}$, which is initially positive, becomes negative before the point of the first closest approach.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2017-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On tidal energy in Newtonian two-body motion\",\"authors\":\"Shuang Miao, S. Shahshahani\",\"doi\":\"10.4310/cjm.2019.v7.n4.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, which is based on an essential linear analysis carried out by Christodoulou, we study the evolution of tidal energy for the motion of two gravitating incompressible fluid balls with free boundaries obeying the Euler-Poisson equations. The orbital energy is defined as the mechanical energy of the two bodies' center of mass. According to the classical analysis of Kepler and Newton, when the fluids are replaced by point masses, the conic curve describing the trajectories of the masses is a hyperbola when the orbital energy is positive and an ellipse when the orbital energy is negative. The orbital energy is conserved in the case of point masses. If the point masses are initially very far, then the orbital energy is positive, corresponding to hyperbolic motion. However, in the motion of fluid bodies the orbital energy is no longer conserved because part of the conserved energy is used in deforming the boundaries of the bodies. In this case the total energy $\\\\tilde{\\\\mathcal{E}}$ can be decomposed into a sum $\\\\tilde{\\\\mathcal{E}}:=\\\\widetilde{\\\\mathcal{E}_{{\\\\mathrm{orbital}}}}+\\\\widetilde{\\\\mathcal{E}_{{\\\\mathrm{tidal}}}}$, with $\\\\widetilde{\\\\mathcal{E}_{{\\\\mathrm{tidal}}}}$ measuring the energy used in deforming the boundaries, such that if $\\\\widetilde{\\\\mathcal{E}_{{\\\\mathrm{orbital}}}} 0$, then the orbit of the bodies must be bounded. In this work we prove that under appropriate conditions on the initial configuration of the system, the fluid boundaries and velocity remain regular up to the point of the first closest approach in the orbit, and that the tidal energy $\\\\widetilde{\\\\mathcal{E}_{{\\\\mathrm{tidal}}}}$ can be made arbitrarily large relative to the total energy $\\\\tilde{\\\\mathcal{E}}$. In particular under these conditions $\\\\widetilde{\\\\mathcal{E}_{{\\\\mathrm{orbital}}}}$, which is initially positive, becomes negative before the point of the first closest approach.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2017-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2019.v7.n4.a2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2019.v7.n4.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,基于Christodoulou进行的基本线性分析,我们研究了两个具有自由边界的引力不可压缩流体球服从Euler Poisson方程运动的潮汐能演化。轨道能量被定义为两个物体质心的机械能。根据开普勒和牛顿的经典分析,当流体被点质量代替时,描述质量轨迹的圆锥曲线在轨道能量为正时是双曲线,在轨道能量是负时是椭圆。在点质量的情况下,轨道能量是守恒的。如果点质量最初非常远,那么轨道能量是正的,对应于双曲运动。然而,在流体的运动中,轨道能量不再守恒,因为守恒能量的一部分用于使物体的边界变形。在这种情况下,总能量$\tilde{\mathcal{E}}$可以分解为总和$\tild{\math cal{E}:=\widetilde{\matical{E}_{\mathrm{orbital}}}{E}_{\mathrm{tidal}}$,带有$\mathcal{E}_{\mathrm{tidal}}$测量使边界变形所用的能量,这样,如果$\widetilde{\matical{E}_{\mathrm{orbital}}}0$,则物体的轨道必须是有界的。在这项工作中,我们证明了在系统初始配置的适当条件下,流体边界和速度直到轨道中第一个最接近的点都保持规则,并且潮汐能$\widetilde{\mathcal{E}_{\mathrm{tidal}}$可以相对于总能量$\mathcal{E}$任意大。特别是在这些条件下$\widetilde{\mathcal{E}_{\mathrm{orbital}}}$,最初为正,在第一个最接近点之前变为负。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On tidal energy in Newtonian two-body motion
In this work, which is based on an essential linear analysis carried out by Christodoulou, we study the evolution of tidal energy for the motion of two gravitating incompressible fluid balls with free boundaries obeying the Euler-Poisson equations. The orbital energy is defined as the mechanical energy of the two bodies' center of mass. According to the classical analysis of Kepler and Newton, when the fluids are replaced by point masses, the conic curve describing the trajectories of the masses is a hyperbola when the orbital energy is positive and an ellipse when the orbital energy is negative. The orbital energy is conserved in the case of point masses. If the point masses are initially very far, then the orbital energy is positive, corresponding to hyperbolic motion. However, in the motion of fluid bodies the orbital energy is no longer conserved because part of the conserved energy is used in deforming the boundaries of the bodies. In this case the total energy $\tilde{\mathcal{E}}$ can be decomposed into a sum $\tilde{\mathcal{E}}:=\widetilde{\mathcal{E}_{{\mathrm{orbital}}}}+\widetilde{\mathcal{E}_{{\mathrm{tidal}}}}$, with $\widetilde{\mathcal{E}_{{\mathrm{tidal}}}}$ measuring the energy used in deforming the boundaries, such that if $\widetilde{\mathcal{E}_{{\mathrm{orbital}}}} 0$, then the orbit of the bodies must be bounded. In this work we prove that under appropriate conditions on the initial configuration of the system, the fluid boundaries and velocity remain regular up to the point of the first closest approach in the orbit, and that the tidal energy $\widetilde{\mathcal{E}_{{\mathrm{tidal}}}}$ can be made arbitrarily large relative to the total energy $\tilde{\mathcal{E}}$. In particular under these conditions $\widetilde{\mathcal{E}_{{\mathrm{orbital}}}}$, which is initially positive, becomes negative before the point of the first closest approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信