基于Python -图形处理单元计算的实时混合仿真实现

IF 1.8 3区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Xiaohui Dong, Zhenyun Tang, Xiuli Du
{"title":"基于Python -图形处理单元计算的实时混合仿真实现","authors":"Xiaohui Dong, Zhenyun Tang, Xiuli Du","doi":"10.1002/tal.2055","DOIUrl":null,"url":null,"abstract":"Real‐time hybrid simulation is a testing method that combines physical experiments and numerical simulations, which can increase the dimensions of experimental specimens and reduce the error of scaling testing. Currently, the maximum degrees of freedom of numerical models are 7000 in real time. To improve the scale of numerical simulation in real time, a testing framework based on Python and graphics processing unit was proposed in this paper. The maximum degrees of freedom of the numerical model exceeded 24,000 with the testing framework. The testing capacity of real‐time hybrid simulation was significantly improved by the graphics processing unit calculations.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of real‐time hybrid simulation based on Python‐graphics processing unit computing\",\"authors\":\"Xiaohui Dong, Zhenyun Tang, Xiuli Du\",\"doi\":\"10.1002/tal.2055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real‐time hybrid simulation is a testing method that combines physical experiments and numerical simulations, which can increase the dimensions of experimental specimens and reduce the error of scaling testing. Currently, the maximum degrees of freedom of numerical models are 7000 in real time. To improve the scale of numerical simulation in real time, a testing framework based on Python and graphics processing unit was proposed in this paper. The maximum degrees of freedom of the numerical model exceeded 24,000 with the testing framework. The testing capacity of real‐time hybrid simulation was significantly improved by the graphics processing unit calculations.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.2055\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2055","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

实时混合模拟是一种将物理实验和数值模拟相结合的测试方法,可以增加实验样本的尺寸,降低比例测试的误差。目前,数值模型的最大实时自由度为7000。为了提高实时数值模拟的规模,本文提出了一种基于Python和图形处理单元的测试框架。在测试框架下,数值模型的最大自由度超过24000。图形处理单元的计算显著提高了实时混合仿真的测试能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of real‐time hybrid simulation based on Python‐graphics processing unit computing
Real‐time hybrid simulation is a testing method that combines physical experiments and numerical simulations, which can increase the dimensions of experimental specimens and reduce the error of scaling testing. Currently, the maximum degrees of freedom of numerical models are 7000 in real time. To improve the scale of numerical simulation in real time, a testing framework based on Python and graphics processing unit was proposed in this paper. The maximum degrees of freedom of the numerical model exceeded 24,000 with the testing framework. The testing capacity of real‐time hybrid simulation was significantly improved by the graphics processing unit calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
4.20%
发文量
83
审稿时长
6-12 weeks
期刊介绍: The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this. The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics. However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信