{"title":"用于5G nR和LTE 42频段智能手机的增强型隔离8单元MIMO天线设计","authors":"Zhiwei Song, Hongxiang Miao, Xiaoming Xu, Lu Wang","doi":"10.1155/2023/7157515","DOIUrl":null,"url":null,"abstract":"A miniaturized enhanced isolation 8-unit MIMO antenna for smartphones is proposed in this paper. The units are planar inverted-F antennas with the same structure, and we use the slotting method and shorted probe to miniaturize them. The size of every unit is 14 × 6 mm2 (0.149 × 0.064λ2). We insert an L-shaped decoupling element into the middle of adjacent radiating elements and connect the decoupling element to the GND. Note that the decoupling elements are on the outer side of the substrate, and the radiating elements are on the inner side of the substrate. Finally, a prototype is fabricated and measured. The measured results show that the bandwidth of the MIMO antenna is from 3.0 GHz to 5.3 GHz (55.4%), which fully supports the n77, n78, and n79 in the 5G nR frequency band and the 4G LTE 42 frequency band (S11 less than −6 dB). The measured isolation of the MIMO antenna is greater than 25 dB by using the decoupling method in this paper. The envelope correlation coefficient of the proposed MIMO antenna is less than 0.08, its radiation efficiency is greater than 50%, and its gain is between 4.2 and 5.3 dBi in the whole operating frequency band.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an Enhanced Isolation 8-Unit MIMO Antenna for Smartphones Operating in 5G nR and LTE 42 Bands\",\"authors\":\"Zhiwei Song, Hongxiang Miao, Xiaoming Xu, Lu Wang\",\"doi\":\"10.1155/2023/7157515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A miniaturized enhanced isolation 8-unit MIMO antenna for smartphones is proposed in this paper. The units are planar inverted-F antennas with the same structure, and we use the slotting method and shorted probe to miniaturize them. The size of every unit is 14 × 6 mm2 (0.149 × 0.064λ2). We insert an L-shaped decoupling element into the middle of adjacent radiating elements and connect the decoupling element to the GND. Note that the decoupling elements are on the outer side of the substrate, and the radiating elements are on the inner side of the substrate. Finally, a prototype is fabricated and measured. The measured results show that the bandwidth of the MIMO antenna is from 3.0 GHz to 5.3 GHz (55.4%), which fully supports the n77, n78, and n79 in the 5G nR frequency band and the 4G LTE 42 frequency band (S11 less than −6 dB). The measured isolation of the MIMO antenna is greater than 25 dB by using the decoupling method in this paper. The envelope correlation coefficient of the proposed MIMO antenna is less than 0.08, its radiation efficiency is greater than 50%, and its gain is between 4.2 and 5.3 dBi in the whole operating frequency band.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7157515\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/7157515","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of an Enhanced Isolation 8-Unit MIMO Antenna for Smartphones Operating in 5G nR and LTE 42 Bands
A miniaturized enhanced isolation 8-unit MIMO antenna for smartphones is proposed in this paper. The units are planar inverted-F antennas with the same structure, and we use the slotting method and shorted probe to miniaturize them. The size of every unit is 14 × 6 mm2 (0.149 × 0.064λ2). We insert an L-shaped decoupling element into the middle of adjacent radiating elements and connect the decoupling element to the GND. Note that the decoupling elements are on the outer side of the substrate, and the radiating elements are on the inner side of the substrate. Finally, a prototype is fabricated and measured. The measured results show that the bandwidth of the MIMO antenna is from 3.0 GHz to 5.3 GHz (55.4%), which fully supports the n77, n78, and n79 in the 5G nR frequency band and the 4G LTE 42 frequency band (S11 less than −6 dB). The measured isolation of the MIMO antenna is greater than 25 dB by using the decoupling method in this paper. The envelope correlation coefficient of the proposed MIMO antenna is less than 0.08, its radiation efficiency is greater than 50%, and its gain is between 4.2 and 5.3 dBi in the whole operating frequency band.
期刊介绍:
International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media.
As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.