基于两阶段学习模型的水声阵列角度分集方法

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Yu Zhang, Dan Zhang, Zhen Han, Peng Jiang
{"title":"基于两阶段学习模型的水声阵列角度分集方法","authors":"Yu Zhang, Dan Zhang, Zhen Han, Peng Jiang","doi":"10.1080/01490419.2022.2154293","DOIUrl":null,"url":null,"abstract":"Abstract The diversity combining technique performs well in the inhibition of multipath, it has been widely used in underwater acoustic (UWA) array signal processing. However, the underwater noise can seriously affect the processing results of the diversity. The conventional filtering algorithms cannot deal with the nonlinear components of underwater radiation noise and have a poor processing effect on complex signals. This study proposes a novel underwater array angle diversity method based on a two-stage model to overcome the problem. A noise-reduction model with a deep convolutional neural network (DCNN) as the backbone network for deep residual learning by preprocessing complex-type data on the received and reference noise signals in the first stage. In the second stage, a modified weighted delay summation beamformer group model is constructed. This model adjusts the weights of each channel by a gradient descent criterion. The desired angle estimates and delay information are then obtained. Finally, the delayed combining of the signals of each path is completed by the combining strategy. Simulation test results show that the proposed algorithm has a lower bit error rate (BER) for diverse received signals. On-lake tests further verify the effectiveness of the algorithm.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"46 1","pages":"216 - 250"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-Stage Learning Model-Based Angle Diversity Method for Underwater Acoustic Array\",\"authors\":\"Yu Zhang, Dan Zhang, Zhen Han, Peng Jiang\",\"doi\":\"10.1080/01490419.2022.2154293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The diversity combining technique performs well in the inhibition of multipath, it has been widely used in underwater acoustic (UWA) array signal processing. However, the underwater noise can seriously affect the processing results of the diversity. The conventional filtering algorithms cannot deal with the nonlinear components of underwater radiation noise and have a poor processing effect on complex signals. This study proposes a novel underwater array angle diversity method based on a two-stage model to overcome the problem. A noise-reduction model with a deep convolutional neural network (DCNN) as the backbone network for deep residual learning by preprocessing complex-type data on the received and reference noise signals in the first stage. In the second stage, a modified weighted delay summation beamformer group model is constructed. This model adjusts the weights of each channel by a gradient descent criterion. The desired angle estimates and delay information are then obtained. Finally, the delayed combining of the signals of each path is completed by the combining strategy. Simulation test results show that the proposed algorithm has a lower bit error rate (BER) for diverse received signals. On-lake tests further verify the effectiveness of the algorithm.\",\"PeriodicalId\":49884,\"journal\":{\"name\":\"Marine Geodesy\",\"volume\":\"46 1\",\"pages\":\"216 - 250\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01490419.2022.2154293\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2022.2154293","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要分集组合技术具有良好的多径抑制性能,在水声阵列信号处理中得到了广泛的应用。然而,水下噪声会严重影响处理结果的多样性。传统的滤波算法不能处理水下辐射噪声的非线性分量,对复杂信号的处理效果较差。为了克服这一问题,本文提出了一种基于两阶段模型的水下阵列角度分集新方法。一种以深度卷积神经网络(DCNN)为骨干网络的降噪模型,通过在第一阶段对接收到的和参考噪声信号上的复杂类型数据进行预处理来进行深度残差学习。在第二阶段,构造了一个改进的加权延迟求和波束形成器组模型。该模型通过梯度下降标准来调整每个通道的权重。然后获得期望的角度估计和延迟信息。最后,通过组合策略完成了每条路径信号的延迟组合。仿真测试结果表明,对于不同的接收信号,该算法具有较低的误码率。湖上测试进一步验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Stage Learning Model-Based Angle Diversity Method for Underwater Acoustic Array
Abstract The diversity combining technique performs well in the inhibition of multipath, it has been widely used in underwater acoustic (UWA) array signal processing. However, the underwater noise can seriously affect the processing results of the diversity. The conventional filtering algorithms cannot deal with the nonlinear components of underwater radiation noise and have a poor processing effect on complex signals. This study proposes a novel underwater array angle diversity method based on a two-stage model to overcome the problem. A noise-reduction model with a deep convolutional neural network (DCNN) as the backbone network for deep residual learning by preprocessing complex-type data on the received and reference noise signals in the first stage. In the second stage, a modified weighted delay summation beamformer group model is constructed. This model adjusts the weights of each channel by a gradient descent criterion. The desired angle estimates and delay information are then obtained. Finally, the delayed combining of the signals of each path is completed by the combining strategy. Simulation test results show that the proposed algorithm has a lower bit error rate (BER) for diverse received signals. On-lake tests further verify the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Geodesy
Marine Geodesy 地学-地球化学与地球物理
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment. The journal will consider articles on the following topics: topography and mapping; satellite altimetry; bathymetry; positioning; precise navigation; boundary demarcation and determination; tsunamis; plate/tectonics; geoid determination; hydrographic and oceanographic observations; acoustics and space instrumentation; ground truth; system calibration and validation; geographic information systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信