基于结果回归的条件平均治疗效果估计

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Lu Li, Niwen Zhou, Lixing Zhu
{"title":"基于结果回归的条件平均治疗效果估计","authors":"Lu Li,&nbsp;Niwen Zhou,&nbsp;Lixing Zhu","doi":"10.1007/s10463-022-00821-x","DOIUrl":null,"url":null,"abstract":"<div><p>The research is about a systematic investigation on the following issues. First, we construct different outcome regression-based estimators for conditional average treatment effect under, respectively, true, parametric, nonparametric and semiparametric dimension reduction structure. Second, according to the corresponding asymptotic variance functions when supposing the models are correctly specified, we answer the following questions: what is the asymptotic efficiency ranking about the four estimators in general? how is the efficiency related to the affiliation of the given covariates in the set of arguments of the regression functions? what do the roles of bandwidth and kernel function selections play for the estimation efficiency; and in which scenarios should the estimator under semiparametric dimension reduction regression structure be used in practice? Meanwhile, the results show that any outcome regression-based estimation should be asymptotically more efficient than any inverse probability weighting-based estimation. Several simulation studies are conducted to examine the finite sample performances of these estimators, and a real dataset is analyzed for illustration.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-022-00821-x.pdf","citationCount":"3","resultStr":"{\"title\":\"Outcome regression-based estimation of conditional average treatment effect\",\"authors\":\"Lu Li,&nbsp;Niwen Zhou,&nbsp;Lixing Zhu\",\"doi\":\"10.1007/s10463-022-00821-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The research is about a systematic investigation on the following issues. First, we construct different outcome regression-based estimators for conditional average treatment effect under, respectively, true, parametric, nonparametric and semiparametric dimension reduction structure. Second, according to the corresponding asymptotic variance functions when supposing the models are correctly specified, we answer the following questions: what is the asymptotic efficiency ranking about the four estimators in general? how is the efficiency related to the affiliation of the given covariates in the set of arguments of the regression functions? what do the roles of bandwidth and kernel function selections play for the estimation efficiency; and in which scenarios should the estimator under semiparametric dimension reduction regression structure be used in practice? Meanwhile, the results show that any outcome regression-based estimation should be asymptotically more efficient than any inverse probability weighting-based estimation. Several simulation studies are conducted to examine the finite sample performances of these estimators, and a real dataset is analyzed for illustration.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10463-022-00821-x.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00821-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00821-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

本文主要对以下几个问题进行了系统的研究。首先,我们分别在真、参数、非参数和半参数降维结构下构造了基于结果回归的条件平均处理效果估计量。其次,在假设模型被正确指定的情况下,根据相应的渐近方差函数,我们回答了以下问题:四种估计量的渐近效率一般排序如何?效率是如何与回归函数参数集合中给定协变量的隶属关系联系起来的?带宽和核函数的选择对估计效率有何影响?半参数降维回归结构下的估计量在哪些情况下应用?同时,结果表明,任何基于结果回归的估计都应该比任何基于逆概率加权的估计渐进地更有效。为了检验这些估计器的有限样本性能,进行了一些仿真研究,并对一个真实数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Outcome regression-based estimation of conditional average treatment effect

Outcome regression-based estimation of conditional average treatment effect

The research is about a systematic investigation on the following issues. First, we construct different outcome regression-based estimators for conditional average treatment effect under, respectively, true, parametric, nonparametric and semiparametric dimension reduction structure. Second, according to the corresponding asymptotic variance functions when supposing the models are correctly specified, we answer the following questions: what is the asymptotic efficiency ranking about the four estimators in general? how is the efficiency related to the affiliation of the given covariates in the set of arguments of the regression functions? what do the roles of bandwidth and kernel function selections play for the estimation efficiency; and in which scenarios should the estimator under semiparametric dimension reduction regression structure be used in practice? Meanwhile, the results show that any outcome regression-based estimation should be asymptotically more efficient than any inverse probability weighting-based estimation. Several simulation studies are conducted to examine the finite sample performances of these estimators, and a real dataset is analyzed for illustration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信