三积p进l函数与非晶对角类的特殊值

IF 0.3 4区 数学 Q4 MATHEMATICS
F. Gatti, Xavier Guitart, Marc Masdeu, V. Rotger
{"title":"三积p进l函数与非晶对角类的特殊值","authors":"F. Gatti, Xavier Guitart, Marc Masdeu, V. Rotger","doi":"10.5802/jtnb.1179","DOIUrl":null,"url":null,"abstract":"The main purpose of this note is to understand the arithmetic encoded in the special value of the $p$-adic $L$-function $\\mathcal{L}_p^g(\\mathbf{f},\\mathbf{g},\\mathbf{h})$ associated to a triple of modular forms $(f,g,h)$ of weights $(2,1,1)$, in the case where the classical $L$-function $L(f\\otimes g\\otimes h,s)$ - which typically has sign $+1$ - does not vanish at its central critical point $s=1$. When $f$ corresponds to an elliptic curve $E/\\mathbb{Q}$ and the classical $L$-function vanishes, the Elliptic Stark Conjecture of Darmon-Lauder-Rotger predicts that $\\mathcal{L}_p^g(\\mathbf{f},\\mathbf{g},\\mathbf{h})(2,1,1)$ is either $0$ (when the order of vanishing of the complex $L$-function is $>2$) or related to logarithms of global points on $E$ and a certain Gross--Stark unit associated to $g$. We complete the picture proposed by the Elliptic Stark Conjecture by providing a formula for the value $\\mathcal{L}_p^g(\\mathbf{f},\\mathbf{g},\\mathbf{h})(2,1,1)$ in the case where $L(f\\otimes g\\otimes h,1)\\neq 0$.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Special values of triple-product p-adic L-functions and non-crystalline diagonal classes\",\"authors\":\"F. Gatti, Xavier Guitart, Marc Masdeu, V. Rotger\",\"doi\":\"10.5802/jtnb.1179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this note is to understand the arithmetic encoded in the special value of the $p$-adic $L$-function $\\\\mathcal{L}_p^g(\\\\mathbf{f},\\\\mathbf{g},\\\\mathbf{h})$ associated to a triple of modular forms $(f,g,h)$ of weights $(2,1,1)$, in the case where the classical $L$-function $L(f\\\\otimes g\\\\otimes h,s)$ - which typically has sign $+1$ - does not vanish at its central critical point $s=1$. When $f$ corresponds to an elliptic curve $E/\\\\mathbb{Q}$ and the classical $L$-function vanishes, the Elliptic Stark Conjecture of Darmon-Lauder-Rotger predicts that $\\\\mathcal{L}_p^g(\\\\mathbf{f},\\\\mathbf{g},\\\\mathbf{h})(2,1,1)$ is either $0$ (when the order of vanishing of the complex $L$-function is $>2$) or related to logarithms of global points on $E$ and a certain Gross--Stark unit associated to $g$. We complete the picture proposed by the Elliptic Stark Conjecture by providing a formula for the value $\\\\mathcal{L}_p^g(\\\\mathbf{f},\\\\mathbf{g},\\\\mathbf{h})(2,1,1)$ in the case where $L(f\\\\otimes g\\\\otimes h,1)\\\\neq 0$.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1179\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1179","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要目的是理解$p$ -adic $L$ -function $\mathcal{L}_p^g(\mathbf{f},\mathbf{g},\mathbf{h})$与权值$(2,1,1)$的模组形式$(f,g,h)$相关联的特殊值编码的算法,在经典的$L$ -function $L(f\otimes g\otimes h,s)$(通常具有签名$+1$)不会在其中心临界点$s=1$消失的情况下。当$f$对应于一条椭圆曲线$E/\mathbb{Q}$和经典函数$L$消失时,daron - lauder - rotger的椭圆Stark猜想预测$\mathcal{L}_p^g(\mathbf{f},\mathbf{g},\mathbf{h})(2,1,1)$要么为$0$(当复数函数$L$ -消失的阶数为$>2$),要么与$E$上全局点的对数和与$g$相关的某个Gross- Stark单位有关。我们通过提供$L(f\otimes g\otimes h,1)\neq 0$ .的情况下值$\mathcal{L}_p^g(\mathbf{f},\mathbf{g},\mathbf{h})(2,1,1)$的公式来完成椭圆斯塔克猜想提出的图景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special values of triple-product p-adic L-functions and non-crystalline diagonal classes
The main purpose of this note is to understand the arithmetic encoded in the special value of the $p$-adic $L$-function $\mathcal{L}_p^g(\mathbf{f},\mathbf{g},\mathbf{h})$ associated to a triple of modular forms $(f,g,h)$ of weights $(2,1,1)$, in the case where the classical $L$-function $L(f\otimes g\otimes h,s)$ - which typically has sign $+1$ - does not vanish at its central critical point $s=1$. When $f$ corresponds to an elliptic curve $E/\mathbb{Q}$ and the classical $L$-function vanishes, the Elliptic Stark Conjecture of Darmon-Lauder-Rotger predicts that $\mathcal{L}_p^g(\mathbf{f},\mathbf{g},\mathbf{h})(2,1,1)$ is either $0$ (when the order of vanishing of the complex $L$-function is $>2$) or related to logarithms of global points on $E$ and a certain Gross--Stark unit associated to $g$. We complete the picture proposed by the Elliptic Stark Conjecture by providing a formula for the value $\mathcal{L}_p^g(\mathbf{f},\mathbf{g},\mathbf{h})(2,1,1)$ in the case where $L(f\otimes g\otimes h,1)\neq 0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信