一种改进的分形孔隙介质毛细压力模型:在低渗透砂岩中的应用

IF 0.9 Q3 ENGINEERING, MULTIDISCIPLINARY
Muhammad Saafan, M. Mohyaldinn, K. Elraies
{"title":"一种改进的分形孔隙介质毛细压力模型:在低渗透砂岩中的应用","authors":"Muhammad Saafan, M. Mohyaldinn, K. Elraies","doi":"10.5614/j.eng.technol.sci.2022.54.5.7","DOIUrl":null,"url":null,"abstract":"Capillary pressure is a crucial input in reservoir simulation models. Generally, capillary pressure measurements are expensive and time-consuming; therefore, there is a limitation on the number of cores tested in the laboratory. Accordingly, numerous capillary pressure models have been suggested to match capillary pressure curves and overcome this limitation. This study developed a new fractal capillary pressure model by depicting the porous system as a bundle of tortuous triangular tubes. The model imitates the pores’ angularity, providing a more accurate representation of the pore system than smooth circular openings. Moreover, triangular tubes allow the wetting phase to be retained in the tube’s corners. A genetic algorithm was employed to match the capillary pressure curves and obtain the proposed model’s parameters. Capillary pressure data of eight low-permeability sandstone samples from the Khatatba formation in the Western Desert of Egypt were utilized to test the proposed model. The results revealed that the developed model reasonably matched the laboratory-measured data.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improved Capillary Pressure Model for Fractal Porous Media: Application to Low-Permeability Sandstone\",\"authors\":\"Muhammad Saafan, M. Mohyaldinn, K. Elraies\",\"doi\":\"10.5614/j.eng.technol.sci.2022.54.5.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capillary pressure is a crucial input in reservoir simulation models. Generally, capillary pressure measurements are expensive and time-consuming; therefore, there is a limitation on the number of cores tested in the laboratory. Accordingly, numerous capillary pressure models have been suggested to match capillary pressure curves and overcome this limitation. This study developed a new fractal capillary pressure model by depicting the porous system as a bundle of tortuous triangular tubes. The model imitates the pores’ angularity, providing a more accurate representation of the pore system than smooth circular openings. Moreover, triangular tubes allow the wetting phase to be retained in the tube’s corners. A genetic algorithm was employed to match the capillary pressure curves and obtain the proposed model’s parameters. Capillary pressure data of eight low-permeability sandstone samples from the Khatatba formation in the Western Desert of Egypt were utilized to test the proposed model. The results revealed that the developed model reasonably matched the laboratory-measured data.\",\"PeriodicalId\":15689,\"journal\":{\"name\":\"Journal of Engineering and Technological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Technological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.eng.technol.sci.2022.54.5.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2022.54.5.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

毛细管压力是储层模拟模型中的一个重要输入。通常,毛细管压力测量是昂贵且耗时的;因此,在实验室中测试的岩心数量是有限制的。因此,已经提出了许多毛细管压力模型来匹配毛细管压力曲线并克服这一限制。本研究通过将多孔系统描述为一束弯曲的三角形管,开发了一种新的分形毛细管压力模型。该模型模拟了孔隙的角度,提供了比光滑圆形开口更准确的孔隙系统表示。此外,三角形管允许润湿相保留在管的角部。采用遗传算法对毛细管压力曲线进行拟合,得到模型参数。利用埃及西部沙漠Khatatba组8个低渗透砂岩样品的毛细管压力数据对所提出的模型进行了测试。结果表明,所建立的模型与实验室实测数据相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Capillary Pressure Model for Fractal Porous Media: Application to Low-Permeability Sandstone
Capillary pressure is a crucial input in reservoir simulation models. Generally, capillary pressure measurements are expensive and time-consuming; therefore, there is a limitation on the number of cores tested in the laboratory. Accordingly, numerous capillary pressure models have been suggested to match capillary pressure curves and overcome this limitation. This study developed a new fractal capillary pressure model by depicting the porous system as a bundle of tortuous triangular tubes. The model imitates the pores’ angularity, providing a more accurate representation of the pore system than smooth circular openings. Moreover, triangular tubes allow the wetting phase to be retained in the tube’s corners. A genetic algorithm was employed to match the capillary pressure curves and obtain the proposed model’s parameters. Capillary pressure data of eight low-permeability sandstone samples from the Khatatba formation in the Western Desert of Egypt were utilized to test the proposed model. The results revealed that the developed model reasonably matched the laboratory-measured data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
77
审稿时长
24 weeks
期刊介绍: Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信