测度空间上的BMO和John-Nirenberg不等式

Pub Date : 2020-01-01 DOI:10.1515/agms-2020-0115
G. Dafni, Ryan Gibara, Andrew Lavigne
{"title":"测度空间上的BMO和John-Nirenberg不等式","authors":"G. Dafni, Ryan Gibara, Andrew Lavigne","doi":"10.1515/agms-2020-0115","DOIUrl":null,"url":null,"abstract":"Abstract We study the space BMO𝒢 (𝕏) in the general setting of a measure space 𝕏 with a fixed collection 𝒢 of measurable sets of positive and finite measure, consisting of functions of bounded mean oscillation on sets in 𝒢. The aim is to see how much of the familiar BMO machinery holds when metric notions have been replaced by measure-theoretic ones. In particular, three aspects of BMO are considered: its properties as a Banach space, its relation with Muckenhoupt weights, and the John-Nirenberg inequality. We give necessary and sufficient conditions on a decomposable measure space 𝕏 for BMO𝒢 (𝕏) to be a Banach space modulo constants. We also develop the notion of a Denjoy family 𝒢, which guarantees that functions in BMO𝒢 (𝕏) satisfy the John-Nirenberg inequality on the elements of 𝒢.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0115","citationCount":"2","resultStr":"{\"title\":\"BMO and the John-Nirenberg Inequality on Measure Spaces\",\"authors\":\"G. Dafni, Ryan Gibara, Andrew Lavigne\",\"doi\":\"10.1515/agms-2020-0115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the space BMO𝒢 (𝕏) in the general setting of a measure space 𝕏 with a fixed collection 𝒢 of measurable sets of positive and finite measure, consisting of functions of bounded mean oscillation on sets in 𝒢. The aim is to see how much of the familiar BMO machinery holds when metric notions have been replaced by measure-theoretic ones. In particular, three aspects of BMO are considered: its properties as a Banach space, its relation with Muckenhoupt weights, and the John-Nirenberg inequality. We give necessary and sufficient conditions on a decomposable measure space 𝕏 for BMO𝒢 (𝕏) to be a Banach space modulo constants. We also develop the notion of a Denjoy family 𝒢, which guarantees that functions in BMO𝒢 (𝕏) satisfy the John-Nirenberg inequality on the elements of 𝒢.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2020-0115\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了广义测度空间𝕏上的BMO𝒢(𝕏),该空间具有固定集合𝒢的正测度和有限测度的可测集,由𝒢集合上的有界平均振荡函数组成。目的是了解当度量概念被度量理论概念所取代时,熟悉的BMO机制还能维持多少。特别地,考虑了BMO的三个方面:它作为Banach空间的性质,它与Muckenhoupt权的关系,以及John-Nirenberg不等式。给出了可分解测度空间𝕏中BMO𝒢(𝕏)是Banach空间模常数的充要条件。我们还发展了Denjoy族𝒢的概念,它保证了BMO𝒢(𝕏)中的函数在𝒢的元素上满足John-Nirenberg不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
BMO and the John-Nirenberg Inequality on Measure Spaces
Abstract We study the space BMO𝒢 (𝕏) in the general setting of a measure space 𝕏 with a fixed collection 𝒢 of measurable sets of positive and finite measure, consisting of functions of bounded mean oscillation on sets in 𝒢. The aim is to see how much of the familiar BMO machinery holds when metric notions have been replaced by measure-theoretic ones. In particular, three aspects of BMO are considered: its properties as a Banach space, its relation with Muckenhoupt weights, and the John-Nirenberg inequality. We give necessary and sufficient conditions on a decomposable measure space 𝕏 for BMO𝒢 (𝕏) to be a Banach space modulo constants. We also develop the notion of a Denjoy family 𝒢, which guarantees that functions in BMO𝒢 (𝕏) satisfy the John-Nirenberg inequality on the elements of 𝒢.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信