二氧化钛基材料光催化制备储氢材料尿素的研究

Photochem Pub Date : 2022-07-15 DOI:10.3390/photochem2030038
Felipe Matamala-Troncoso, M. Isaacs, C. Sáez-Navarrete
{"title":"二氧化钛基材料光催化制备储氢材料尿素的研究","authors":"Felipe Matamala-Troncoso, M. Isaacs, C. Sáez-Navarrete","doi":"10.3390/photochem2030038","DOIUrl":null,"url":null,"abstract":"This review analyzes the photocatalyzed urea syntheses by TiO2–based materials. The most outstanding works in synthesizing urea from the simultaneous photocatalyzed reduction of carbon dioxide and nitrogen compounds are reviewed and discussed. Urea has been widely used in the agricultural industry as a fertilizer. It represents more than 50% of the nitrogen fertilizer market, and its global demand has increased more than 100 times in the last decades. In energy terms, urea has been considered a hydrogen–storage (6.71 wt.%) and ammonia–storage (56.7 wt.%) compound, giving it fuel potential. Urea properties meet the requirements of the US Department of Energy for hydrogen–storage substances, meanly because urea crystalizes, allowing storage and safe transportation. Conventional industrial urea synthesis is energy–intensive (3.2–5.5 GJ ton−1) since it requires high pressures and temperatures, so developing a photocatalyzed synthesis at ambient temperature and pressure is an attractive alternative to conventional synthesis. Due to the lack of reports for directly catalyzed urea synthesis, this review is based on the most prominent works. We provide details of developed experimental set–ups, amounts of products reported, the advantages and difficulties of the synthesis, and the scope of the technological and energetic challenges faced by TiO2–based photocatalyst materials used for urea synthesis. The possibility of scaling photocatalysis technology was evaluated as well. We hope this review invites exploring and developing a technology based on clean and renewable energies for industrial urea production.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photocatalyzed Production of Urea as a Hydrogen–Storage Material by TiO2–Based Materials\",\"authors\":\"Felipe Matamala-Troncoso, M. Isaacs, C. Sáez-Navarrete\",\"doi\":\"10.3390/photochem2030038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review analyzes the photocatalyzed urea syntheses by TiO2–based materials. The most outstanding works in synthesizing urea from the simultaneous photocatalyzed reduction of carbon dioxide and nitrogen compounds are reviewed and discussed. Urea has been widely used in the agricultural industry as a fertilizer. It represents more than 50% of the nitrogen fertilizer market, and its global demand has increased more than 100 times in the last decades. In energy terms, urea has been considered a hydrogen–storage (6.71 wt.%) and ammonia–storage (56.7 wt.%) compound, giving it fuel potential. Urea properties meet the requirements of the US Department of Energy for hydrogen–storage substances, meanly because urea crystalizes, allowing storage and safe transportation. Conventional industrial urea synthesis is energy–intensive (3.2–5.5 GJ ton−1) since it requires high pressures and temperatures, so developing a photocatalyzed synthesis at ambient temperature and pressure is an attractive alternative to conventional synthesis. Due to the lack of reports for directly catalyzed urea synthesis, this review is based on the most prominent works. We provide details of developed experimental set–ups, amounts of products reported, the advantages and difficulties of the synthesis, and the scope of the technological and energetic challenges faced by TiO2–based photocatalyst materials used for urea synthesis. The possibility of scaling photocatalysis technology was evaluated as well. We hope this review invites exploring and developing a technology based on clean and renewable energies for industrial urea production.\",\"PeriodicalId\":74440,\"journal\":{\"name\":\"Photochem\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/photochem2030038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/photochem2030038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文综述了二氧化钛基材料光催化合成尿素的研究进展。综述了近年来光催化二氧化碳和氮化合物同时还原合成尿素的研究进展。尿素作为一种肥料在农业上得到了广泛的应用。它占氮肥市场的50%以上,在过去几十年里,其全球需求增长了100多倍。在能源方面,尿素被认为是一种储氢(6.71 wt.%)和储氨(56.7% wt.%)的化合物,使其具有燃料潜力。尿素的性能符合美国能源部对储氢物质的要求,即因为尿素结晶,允许储存和安全运输。传统的工业尿素合成是能源密集型的(3.2-5.5 GJ吨- 1),因为它需要高压和高温,因此在常温和常压下开发光催化合成是传统合成的一个有吸引力的替代方案。由于缺乏直接催化合成尿素的相关报道,本文仅对一些较为突出的研究成果进行综述。我们详细介绍了开发的实验装置,报告的产品数量,合成的优点和困难,以及用于尿素合成的二氧化钛基光催化剂材料所面临的技术和能量挑战的范围。并对结垢光催化技术的可行性进行了评价。我们希望通过这一综述,探索和开发一种基于清洁和可再生能源的工业尿素生产技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photocatalyzed Production of Urea as a Hydrogen–Storage Material by TiO2–Based Materials
This review analyzes the photocatalyzed urea syntheses by TiO2–based materials. The most outstanding works in synthesizing urea from the simultaneous photocatalyzed reduction of carbon dioxide and nitrogen compounds are reviewed and discussed. Urea has been widely used in the agricultural industry as a fertilizer. It represents more than 50% of the nitrogen fertilizer market, and its global demand has increased more than 100 times in the last decades. In energy terms, urea has been considered a hydrogen–storage (6.71 wt.%) and ammonia–storage (56.7 wt.%) compound, giving it fuel potential. Urea properties meet the requirements of the US Department of Energy for hydrogen–storage substances, meanly because urea crystalizes, allowing storage and safe transportation. Conventional industrial urea synthesis is energy–intensive (3.2–5.5 GJ ton−1) since it requires high pressures and temperatures, so developing a photocatalyzed synthesis at ambient temperature and pressure is an attractive alternative to conventional synthesis. Due to the lack of reports for directly catalyzed urea synthesis, this review is based on the most prominent works. We provide details of developed experimental set–ups, amounts of products reported, the advantages and difficulties of the synthesis, and the scope of the technological and energetic challenges faced by TiO2–based photocatalyst materials used for urea synthesis. The possibility of scaling photocatalysis technology was evaluated as well. We hope this review invites exploring and developing a technology based on clean and renewable energies for industrial urea production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信