大样本相关矩阵:一个比较定理及其应用

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
J. Heiny
{"title":"大样本相关矩阵:一个比较定理及其应用","authors":"J. Heiny","doi":"10.1214/22-ejp817","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the diagonal of a high-dimensional sample covariance matrix stemming from $n$ independent observations of a $p$-dimensional time series with finite fourth moments can be approximated in spectral norm by the diagonal of the population covariance matrix. We assume that $n,p\\to \\infty$ with $p/n$ tending to a constant which might be positive or zero. As applications, we provide an approximation of the sample correlation matrix ${\\mathbf R}$ and derive a variety of results for its eigenvalues. We identify the limiting spectral distribution of ${\\mathbf R}$ and construct an estimator for the population correlation matrix and its eigenvalues. Finally, the almost sure limits of the extreme eigenvalues of ${\\mathbf R}$ in a generalized spiked correlation model are analyzed.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large sample correlation matrices: a comparison theorem and its applications\",\"authors\":\"J. Heiny\",\"doi\":\"10.1214/22-ejp817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that the diagonal of a high-dimensional sample covariance matrix stemming from $n$ independent observations of a $p$-dimensional time series with finite fourth moments can be approximated in spectral norm by the diagonal of the population covariance matrix. We assume that $n,p\\\\to \\\\infty$ with $p/n$ tending to a constant which might be positive or zero. As applications, we provide an approximation of the sample correlation matrix ${\\\\mathbf R}$ and derive a variety of results for its eigenvalues. We identify the limiting spectral distribution of ${\\\\mathbf R}$ and construct an estimator for the population correlation matrix and its eigenvalues. Finally, the almost sure limits of the extreme eigenvalues of ${\\\\mathbf R}$ in a generalized spiked correlation model are analyzed.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ejp817\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejp817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们证明了源于具有有限四阶矩的$p$维时间序列的$n$独立观测的高维样本协方差矩阵的对角线可以通过总体协方差矩阵的对角在谱范数中近似。我们假设$n,p\to\infty$与$p/n$趋向于一个常数,该常数可能是正或零。作为应用,我们提供了样本相关矩阵${\mathbf R}$的近似,并导出了其特征值的各种结果。我们确定了${\mathbf R}$的极限谱分布,并构造了总体相关矩阵及其特征值的估计量。最后,分析了广义尖峰相关模型中${\mathbf R}$的极值特征值的几乎确定极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large sample correlation matrices: a comparison theorem and its applications
In this paper, we show that the diagonal of a high-dimensional sample covariance matrix stemming from $n$ independent observations of a $p$-dimensional time series with finite fourth moments can be approximated in spectral norm by the diagonal of the population covariance matrix. We assume that $n,p\to \infty$ with $p/n$ tending to a constant which might be positive or zero. As applications, we provide an approximation of the sample correlation matrix ${\mathbf R}$ and derive a variety of results for its eigenvalues. We identify the limiting spectral distribution of ${\mathbf R}$ and construct an estimator for the population correlation matrix and its eigenvalues. Finally, the almost sure limits of the extreme eigenvalues of ${\mathbf R}$ in a generalized spiked correlation model are analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信