Vandermonde矩阵条件数的下界和上界以及使用伪径向线的基本解方法

IF 1.8 3区 数学 Q1 MATHEMATICS
Li-Ping Zhang, Zi-Cai Li, Ming-Gong Lee, Hung-Tsai Huang
{"title":"Vandermonde矩阵条件数的下界和上界以及使用伪径向线的基本解方法","authors":"Li-Ping Zhang, Zi-Cai Li, Ming-Gong Lee, Hung-Tsai Huang","doi":"10.1002/nla.2466","DOIUrl":null,"url":null,"abstract":"Consider the method of fundamental solutions (MFS) for 2D Laplace's equation in a bounded simply connected domain S$$ S $$ . In the standard MFS, the source nodes are located on a closed contour outside the domain boundary Γ(=∂S)$$ \\Gamma \\left(=\\partial S\\right) $$ , which is called pseudo‐boundary. For circular, elliptic, and general closed pseudo‐boundaries, analysis and computation have been studied extensively. New locations of source nodes are proposed along two pseudo radial‐lines outside Γ$$ \\Gamma $$ . Numerical results are very encouraging and promising. Since the success of the MFS mainly depends on stability, our efforts are focused on deriving the lower and upper bounds of condition number (Cond). The study finds stability properties of new Vandermonde‐wise matrices on nodes xi∈[a,b]$$ {x}_i\\in \\left[a,b\\right] $$ with 0","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower and upper bounds of condition number for Vandermonde‐wise matrices and method of fundamental solutions using pseudo radial‐lines\",\"authors\":\"Li-Ping Zhang, Zi-Cai Li, Ming-Gong Lee, Hung-Tsai Huang\",\"doi\":\"10.1002/nla.2466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the method of fundamental solutions (MFS) for 2D Laplace's equation in a bounded simply connected domain S$$ S $$ . In the standard MFS, the source nodes are located on a closed contour outside the domain boundary Γ(=∂S)$$ \\\\Gamma \\\\left(=\\\\partial S\\\\right) $$ , which is called pseudo‐boundary. For circular, elliptic, and general closed pseudo‐boundaries, analysis and computation have been studied extensively. New locations of source nodes are proposed along two pseudo radial‐lines outside Γ$$ \\\\Gamma $$ . Numerical results are very encouraging and promising. Since the success of the MFS mainly depends on stability, our efforts are focused on deriving the lower and upper bounds of condition number (Cond). The study finds stability properties of new Vandermonde‐wise matrices on nodes xi∈[a,b]$$ {x}_i\\\\in \\\\left[a,b\\\\right] $$ with 0\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2466\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2466","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑有界单连通域S $$ S $$中二维拉普拉斯方程的基本解方法。在标准的MFS中,源节点位于域边界Γ(=∂S) $$ \Gamma \left(=\partial S\right) $$外的封闭轮廓上,称为伪边界。对于圆形、椭圆形和一般闭伪边界,分析和计算已经得到了广泛的研究。沿着Γ $$ \Gamma $$外的两条伪径向线提出了源节点的新位置。数值结果令人鼓舞和鼓舞。由于MFS的成功主要取决于稳定性,因此我们的工作重点是推导条件数(Cond)的下界和上界。研究了节点xi∈[a,b] $$ {x}_i\in \left[a,b\right] $$上具有0的新Vandermonde - wise矩阵的稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower and upper bounds of condition number for Vandermonde‐wise matrices and method of fundamental solutions using pseudo radial‐lines
Consider the method of fundamental solutions (MFS) for 2D Laplace's equation in a bounded simply connected domain S$$ S $$ . In the standard MFS, the source nodes are located on a closed contour outside the domain boundary Γ(=∂S)$$ \Gamma \left(=\partial S\right) $$ , which is called pseudo‐boundary. For circular, elliptic, and general closed pseudo‐boundaries, analysis and computation have been studied extensively. New locations of source nodes are proposed along two pseudo radial‐lines outside Γ$$ \Gamma $$ . Numerical results are very encouraging and promising. Since the success of the MFS mainly depends on stability, our efforts are focused on deriving the lower and upper bounds of condition number (Cond). The study finds stability properties of new Vandermonde‐wise matrices on nodes xi∈[a,b]$$ {x}_i\in \left[a,b\right] $$ with 0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信