线性时不变广义系统的定性符号稳定性

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
M. Chand, Mamoni Paitandi, M. Gupta
{"title":"线性时不变广义系统的定性符号稳定性","authors":"M. Chand, Mamoni Paitandi, M. Gupta","doi":"10.14311/ap.2023.63.0171","DOIUrl":null,"url":null,"abstract":"This article discusses assessing the instability of a continuous linear homogeneous timeinvariant descriptor system. Some necessary conditions and sufficient conditions are derived to establish the stability of a matrix pair by the fundamentals of qualitative ecological principles. The proposed conditions are derived using only the qualitative (sign) information of the matrix pair elements. Based on these conditions, the instability of a matrix pair can easily be determined, without any magnitude information of the matrix pair elements and without numerical eigenvalues calculations. With the proposed theory, Magnitude Dependent Stable, Magnitude Dependent Unstable, and Qualitative Sign Stable matrix pairs can be distinguished. The consequences of the proposed conditions and some illustrative examples are discussed.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative sign stability of linear time invariant descriptor systems\",\"authors\":\"M. Chand, Mamoni Paitandi, M. Gupta\",\"doi\":\"10.14311/ap.2023.63.0171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses assessing the instability of a continuous linear homogeneous timeinvariant descriptor system. Some necessary conditions and sufficient conditions are derived to establish the stability of a matrix pair by the fundamentals of qualitative ecological principles. The proposed conditions are derived using only the qualitative (sign) information of the matrix pair elements. Based on these conditions, the instability of a matrix pair can easily be determined, without any magnitude information of the matrix pair elements and without numerical eigenvalues calculations. With the proposed theory, Magnitude Dependent Stable, Magnitude Dependent Unstable, and Qualitative Sign Stable matrix pairs can be distinguished. The consequences of the proposed conditions and some illustrative examples are discussed.\",\"PeriodicalId\":45804,\"journal\":{\"name\":\"Acta Polytechnica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/ap.2023.63.0171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2023.63.0171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类连续线性齐次时不变广义系统的不稳定性评价问题。利用定性生态学原理的基本原理,导出了建立矩阵对稳定性的充分必要条件。所提出的条件仅使用矩阵对元素的定性(符号)信息推导出来。基于这些条件,可以很容易地确定矩阵对的不稳定性,而不需要任何矩阵对元素的大小信息,也不需要计算数值特征值。根据所提出的理论,可以区分大小相关稳定、大小相关不稳定和定性符号稳定矩阵对。讨论了所提出条件的结果和一些说明性的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative sign stability of linear time invariant descriptor systems
This article discusses assessing the instability of a continuous linear homogeneous timeinvariant descriptor system. Some necessary conditions and sufficient conditions are derived to establish the stability of a matrix pair by the fundamentals of qualitative ecological principles. The proposed conditions are derived using only the qualitative (sign) information of the matrix pair elements. Based on these conditions, the instability of a matrix pair can easily be determined, without any magnitude information of the matrix pair elements and without numerical eigenvalues calculations. With the proposed theory, Magnitude Dependent Stable, Magnitude Dependent Unstable, and Qualitative Sign Stable matrix pairs can be distinguished. The consequences of the proposed conditions and some illustrative examples are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Polytechnica
Acta Polytechnica ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
12.50%
发文量
49
审稿时长
24 weeks
期刊介绍: Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信