包含非齐次初始边界条件的序列时间空间分数阶扩散方程

IF 0.7 Q2 MATHEMATICS
Süleyman Çetinkaya, A. Demir
{"title":"包含非齐次初始边界条件的序列时间空间分数阶扩散方程","authors":"Süleyman Çetinkaya, A. Demir","doi":"10.32513/tmj/19322008124","DOIUrl":null,"url":null,"abstract":"In this research, we discuss the construction of analytic solution of non-homogenous initial boundary value problem including PDEs of fractional order. By means of separation of variables method, the solution is constructed in the form of a Fourier series with respect to the eigenfunctions of a corresponding Sturm-Liouville eigenvalue problem including fractional derivative in Liouville-Caputo sense.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential time space fractional diffusion equation including nonhomogenous initial boundary conditions\",\"authors\":\"Süleyman Çetinkaya, A. Demir\",\"doi\":\"10.32513/tmj/19322008124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we discuss the construction of analytic solution of non-homogenous initial boundary value problem including PDEs of fractional order. By means of separation of variables method, the solution is constructed in the form of a Fourier series with respect to the eigenfunctions of a corresponding Sturm-Liouville eigenvalue problem including fractional derivative in Liouville-Caputo sense.\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tmj/19322008124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们讨论了包含分数阶偏微分方程的非齐次初边值问题的解析解的构造。通过变量分离方法,将解构造为关于相应的Sturm-Liouville特征值问题的特征函数的傅立叶级数形式,该问题包括Liouville-Caputo意义上的分数导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential time space fractional diffusion equation including nonhomogenous initial boundary conditions
In this research, we discuss the construction of analytic solution of non-homogenous initial boundary value problem including PDEs of fractional order. By means of separation of variables method, the solution is constructed in the form of a Fourier series with respect to the eigenfunctions of a corresponding Sturm-Liouville eigenvalue problem including fractional derivative in Liouville-Caputo sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信