一阶常微分方程系统的正则谱问题

IF 1.4 4区 数学 Q1 MATHEMATICS
A. Shkalikov
{"title":"一阶常微分方程系统的正则谱问题","authors":"A. Shkalikov","doi":"10.1070/RM10021","DOIUrl":null,"url":null,"abstract":"Here y(x) = (y1(x), . . . , yn(x)) and A(x) = {ajk(x)}j,k=1, where the ajk are complex functions in L1[0, 1], B = diag{b1, . . . , bn} with 0 ̸= bj ∈ C, ρ is a uniformly positive bounded measurable function, U0 and U1 are n × n number matrices, and λ is the spectral parameter. Special cases of such problems include spectral problems for the Dirac operator (which corresponds to n = 2, b1 = −b2 = i, and ρ(x) ≡ 1) and for the systems of telegrapher’s equations (n = 2, b1 = −b2 = 1, and ρ ∈ L1[0, 1]). We consider the case when all the bj are different. The straight lines Re(bkλ) = Re(bjλ), k ̸= j = 1, . . . , n, partition the complex plane C into (at most n − n) sectors Γl with vertex at the origin. In each Γl, 1 ⩽ l ⩽ n − n, we have a fundamental matrix of solutions of (1), which has the form Y(x, λ) = E(x, λ)(M(x) + R(x, λ)), where","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"939 - 941"},"PeriodicalIF":1.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regular spectral problems for systems of ordinary differential equations of the first order\",\"authors\":\"A. Shkalikov\",\"doi\":\"10.1070/RM10021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here y(x) = (y1(x), . . . , yn(x)) and A(x) = {ajk(x)}j,k=1, where the ajk are complex functions in L1[0, 1], B = diag{b1, . . . , bn} with 0 ̸= bj ∈ C, ρ is a uniformly positive bounded measurable function, U0 and U1 are n × n number matrices, and λ is the spectral parameter. Special cases of such problems include spectral problems for the Dirac operator (which corresponds to n = 2, b1 = −b2 = i, and ρ(x) ≡ 1) and for the systems of telegrapher’s equations (n = 2, b1 = −b2 = 1, and ρ ∈ L1[0, 1]). We consider the case when all the bj are different. The straight lines Re(bkλ) = Re(bjλ), k ̸= j = 1, . . . , n, partition the complex plane C into (at most n − n) sectors Γl with vertex at the origin. In each Γl, 1 ⩽ l ⩽ n − n, we have a fundamental matrix of solutions of (1), which has the form Y(x, λ) = E(x, λ)(M(x) + R(x, λ)), where\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"76 1\",\"pages\":\"939 - 941\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM10021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

这里y(x) = (y1(x)), yn(x))和A(x) = {ajk(x)}j,k=1,其中ajk是L1[0,1]中的复函数,B = diag{b1,…, bn},且ρ为一致正有界可测函数,U0和U1为n × n个数矩阵,λ为谱参数。这类问题的特殊情况包括狄拉克算子(对应于n = 2, b1 =−b2 = i, ρ(x)≡1)和电报方程组(n = 2, b1 =−b2 = 1, ρ∈L1[0,1])的谱问题。我们考虑所有bj都不相同的情况。直线Re(bkλ) = Re(bjλ), k ε = j = 1,…, n,将复平面C划分为(最多n−n)个扇区Γl,顶点位于原点。在每个Γl, 1≤l≤n−n中,我们有一个(1)的解的基本矩阵,其形式为Y(x, λ) = E(x, λ)(M(x) + R(x, λ)),其中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regular spectral problems for systems of ordinary differential equations of the first order
Here y(x) = (y1(x), . . . , yn(x)) and A(x) = {ajk(x)}j,k=1, where the ajk are complex functions in L1[0, 1], B = diag{b1, . . . , bn} with 0 ̸= bj ∈ C, ρ is a uniformly positive bounded measurable function, U0 and U1 are n × n number matrices, and λ is the spectral parameter. Special cases of such problems include spectral problems for the Dirac operator (which corresponds to n = 2, b1 = −b2 = i, and ρ(x) ≡ 1) and for the systems of telegrapher’s equations (n = 2, b1 = −b2 = 1, and ρ ∈ L1[0, 1]). We consider the case when all the bj are different. The straight lines Re(bkλ) = Re(bjλ), k ̸= j = 1, . . . , n, partition the complex plane C into (at most n − n) sectors Γl with vertex at the origin. In each Γl, 1 ⩽ l ⩽ n − n, we have a fundamental matrix of solutions of (1), which has the form Y(x, λ) = E(x, λ)(M(x) + R(x, λ)), where
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信