{"title":"的群行列式ℤ_n×H","authors":"B. Paudel, Christopher G. Pinner","doi":"10.7546/nntdm.2023.29.3.603-619","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb Z_n$ denote the cyclic group of order $n$. We show how the group determinant for $G= \\mathbb Z_n \\times H$ can be simply written in terms of the group determinant for $H$. We use this to get a complete description of the integer group determinants for $\\mathbb Z_2 \\times D_8$ where $D_8$ is the dihedral group of order $8$, and $\\mathbb Z_2 \\times Q_8$ where $Q_8$ is the quaternion group of order $8$.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The group determinants for ℤ_n × H\",\"authors\":\"B. Paudel, Christopher G. Pinner\",\"doi\":\"10.7546/nntdm.2023.29.3.603-619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb Z_n$ denote the cyclic group of order $n$. We show how the group determinant for $G= \\\\mathbb Z_n \\\\times H$ can be simply written in terms of the group determinant for $H$. We use this to get a complete description of the integer group determinants for $\\\\mathbb Z_2 \\\\times D_8$ where $D_8$ is the dihedral group of order $8$, and $\\\\mathbb Z_2 \\\\times Q_8$ where $Q_8$ is the quaternion group of order $8$.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.3.603-619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.3.603-619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $\mathbb Z_n$ denote the cyclic group of order $n$. We show how the group determinant for $G= \mathbb Z_n \times H$ can be simply written in terms of the group determinant for $H$. We use this to get a complete description of the integer group determinants for $\mathbb Z_2 \times D_8$ where $D_8$ is the dihedral group of order $8$, and $\mathbb Z_2 \times Q_8$ where $Q_8$ is the quaternion group of order $8$.