{"title":"奇异拟线性问题正解的存在性、不存在性和多重性","authors":"R. L. Alves","doi":"10.14232/ejqtde.2022.1.13","DOIUrl":null,"url":null,"abstract":"In the present paper we deal with a quasilinear problem involving a singular term and a parametric superlinear perturbation. We are interested in the existence, nonexistence and multiplicity of positive solutions as the parameter \n λ\n >\n 0\n varies. In our first result, the superlinear perturbation has an arbitrary growth and we obtain the existence of a solution for the problem by using the sub-supersolution method. For the second result, the superlinear perturbation has subcritical growth and we employ the Mountain Pass Theorem to show the existence of a second solution.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence, nonexistence and multiplicity of positive solutions for singular quasilinear problems\",\"authors\":\"R. L. Alves\",\"doi\":\"10.14232/ejqtde.2022.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we deal with a quasilinear problem involving a singular term and a parametric superlinear perturbation. We are interested in the existence, nonexistence and multiplicity of positive solutions as the parameter \\n λ\\n >\\n 0\\n varies. In our first result, the superlinear perturbation has an arbitrary growth and we obtain the existence of a solution for the problem by using the sub-supersolution method. For the second result, the superlinear perturbation has subcritical growth and we employ the Mountain Pass Theorem to show the existence of a second solution.\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.13\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence, nonexistence and multiplicity of positive solutions for singular quasilinear problems
In the present paper we deal with a quasilinear problem involving a singular term and a parametric superlinear perturbation. We are interested in the existence, nonexistence and multiplicity of positive solutions as the parameter
λ
>
0
varies. In our first result, the superlinear perturbation has an arbitrary growth and we obtain the existence of a solution for the problem by using the sub-supersolution method. For the second result, the superlinear perturbation has subcritical growth and we employ the Mountain Pass Theorem to show the existence of a second solution.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.