{"title":"与交换环相关的几类完全零化子理想图","authors":"M. Adlifard, S. Payrovi","doi":"10.22124/JART.2021.17227.1214","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring and let $Bbb A(R)$ bethe set of all ideals of $R$ with nonzero annihilator.The annihilator-ideal graph of $R$ is defined as the graph${A_I}(R)$ with the vertex set $Bbb A(R)^*=Bbb A(R)setminus{0}$ and twodistinct vertices $I$ and $J$ are adjacent if and only if${rm Ann}_R(IJ)neq{rm Ann}_R(I) cup{rm Ann}_R(J)$. In this paper, perfectness of${A_I}(R)$ for some classes of rings is investigated.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"21-29"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some classes of perfect annihilator-ideal graphs associated with commutative rings\",\"authors\":\"M. Adlifard, S. Payrovi\",\"doi\":\"10.22124/JART.2021.17227.1214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative ring and let $Bbb A(R)$ bethe set of all ideals of $R$ with nonzero annihilator.The annihilator-ideal graph of $R$ is defined as the graph${A_I}(R)$ with the vertex set $Bbb A(R)^*=Bbb A(R)setminus{0}$ and twodistinct vertices $I$ and $J$ are adjacent if and only if${rm Ann}_R(IJ)neq{rm Ann}_R(I) cup{rm Ann}_R(J)$. In this paper, perfectness of${A_I}(R)$ for some classes of rings is investigated.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"9 1\",\"pages\":\"21-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2021.17227.1214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.17227.1214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Some classes of perfect annihilator-ideal graphs associated with commutative rings
Let $R$ be a commutative ring and let $Bbb A(R)$ bethe set of all ideals of $R$ with nonzero annihilator.The annihilator-ideal graph of $R$ is defined as the graph${A_I}(R)$ with the vertex set $Bbb A(R)^*=Bbb A(R)setminus{0}$ and twodistinct vertices $I$ and $J$ are adjacent if and only if${rm Ann}_R(IJ)neq{rm Ann}_R(I) cup{rm Ann}_R(J)$. In this paper, perfectness of${A_I}(R)$ for some classes of rings is investigated.