{"title":"单项式理想和对合基的互补分解","authors":"Amir Hashemi, Matthias Orth, Werner M. Seiler","doi":"10.1007/s00200-022-00569-0","DOIUrl":null,"url":null,"abstract":"<div><p>Complementary decompositions of monomial ideals—also known as Stanley decompositions—play an important role in many places in commutative algebra. In this article, we discuss and compare several algorithms for their computation. This includes a classical recursive one, an algorithm already proposed by Janet and a construction proposed by Hironaka in his work on idealistic exponents. We relate Janet’s algorithm to the Janet tree of the Janet basis and extend this idea to Janet-like bases to obtain an optimised algorithm. We show that Hironaka’s construction terminates, if and only if the monomial ideal is quasi-stable. Furthermore, we show that in this case the algorithm of Janet determines the same decomposition more efficiently. Finally, we briefly discuss how these results can be used for the computation of primary and irreducible decompositions.</p></div>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00200-022-00569-0.pdf","citationCount":"1","resultStr":"{\"title\":\"Complementary decompositions of monomial ideals and involutive bases\",\"authors\":\"Amir Hashemi, Matthias Orth, Werner M. Seiler\",\"doi\":\"10.1007/s00200-022-00569-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Complementary decompositions of monomial ideals—also known as Stanley decompositions—play an important role in many places in commutative algebra. In this article, we discuss and compare several algorithms for their computation. This includes a classical recursive one, an algorithm already proposed by Janet and a construction proposed by Hironaka in his work on idealistic exponents. We relate Janet’s algorithm to the Janet tree of the Janet basis and extend this idea to Janet-like bases to obtain an optimised algorithm. We show that Hironaka’s construction terminates, if and only if the monomial ideal is quasi-stable. Furthermore, we show that in this case the algorithm of Janet determines the same decomposition more efficiently. Finally, we briefly discuss how these results can be used for the computation of primary and irreducible decompositions.</p></div>\",\"PeriodicalId\":50742,\"journal\":{\"name\":\"Applicable Algebra in Engineering Communication and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00200-022-00569-0.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Algebra in Engineering Communication and Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00200-022-00569-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Algebra in Engineering Communication and Computing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00200-022-00569-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Complementary decompositions of monomial ideals and involutive bases
Complementary decompositions of monomial ideals—also known as Stanley decompositions—play an important role in many places in commutative algebra. In this article, we discuss and compare several algorithms for their computation. This includes a classical recursive one, an algorithm already proposed by Janet and a construction proposed by Hironaka in his work on idealistic exponents. We relate Janet’s algorithm to the Janet tree of the Janet basis and extend this idea to Janet-like bases to obtain an optimised algorithm. We show that Hironaka’s construction terminates, if and only if the monomial ideal is quasi-stable. Furthermore, we show that in this case the algorithm of Janet determines the same decomposition more efficiently. Finally, we briefly discuss how these results can be used for the computation of primary and irreducible decompositions.
期刊介绍:
Algebra is a common language for many scientific domains. In developing this language mathematicians prove theorems and design methods which demonstrate the applicability of algebra. Using this language scientists in many fields find algebra indispensable to create methods, techniques and tools to solve their specific problems.
Applicable Algebra in Engineering, Communication and Computing will publish mathematically rigorous, original research papers reporting on algebraic methods and techniques relevant to all domains concerned with computers, intelligent systems and communications. Its scope includes, but is not limited to, vision, robotics, system design, fault tolerance and dependability of systems, VLSI technology, signal processing, signal theory, coding, error control techniques, cryptography, protocol specification, networks, software engineering, arithmetics, algorithms, complexity, computer algebra, programming languages, logic and functional programming, algebraic specification, term rewriting systems, theorem proving, graphics, modeling, knowledge engineering, expert systems, and artificial intelligence methodology.
Purely theoretical papers will not primarily be sought, but papers dealing with problems in such domains as commutative or non-commutative algebra, group theory, field theory, or real algebraic geometry, which are of interest for applications in the above mentioned fields are relevant for this journal.
On the practical side, technology and know-how transfer papers from engineering which either stimulate or illustrate research in applicable algebra are within the scope of the journal.