碱性硫化浸出铜浮选精矿中的tennantite选择性溶解砷

IF 0.9 Q3 MINING & MINERAL PROCESSING
J. Cuevas, W. Bruckard, M. Pownceby, G. Sparrow, A. Torpy
{"title":"碱性硫化浸出铜浮选精矿中的tennantite选择性溶解砷","authors":"J. Cuevas, W. Bruckard, M. Pownceby, G. Sparrow, A. Torpy","doi":"10.1080/25726641.2021.1948319","DOIUrl":null,"url":null,"abstract":"ABSTRACT High-arsenic copper flotation concentrates, in which the major arsenic-bearing mineral was tennantite, were leached with an alkaline sulphide system. At a pulp density of 5 wt% solids with 100–150 g/L Na2S and 50 g/L NaOH, over 91 wt% As was dissolved within 2 h at 100°C. From concentrates containing 3.4–4.9 wt% As, leach residues containing <0.5 wt% As were obtained making them suitable as a smelter feed without a penalty for arsenic. Copper dissolution ranged from 16 to 22 wt% Cu, with significant amounts of calcium, iron and sulphur also dissolved. In a leach at 34.0 wt% solids, excellent arsenic extraction was obtained (97.9 wt% As), but the levels of copper, calcium, and iron dissolution were 0.5, 1.1, and 0.2 wt%, respectively, meaning excellent selectivity for arsenic was achieved. X-ray diffraction and electron probe microanalyses indicated the mechanism for arsenic dissolution from tennantite, and bornite abundance in the residue.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"131 1","pages":"229 - 238"},"PeriodicalIF":0.9000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Alkaline sulphide leaching of tennantite in copper flotation concentrates to selectively dissolve arsenic\",\"authors\":\"J. Cuevas, W. Bruckard, M. Pownceby, G. Sparrow, A. Torpy\",\"doi\":\"10.1080/25726641.2021.1948319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT High-arsenic copper flotation concentrates, in which the major arsenic-bearing mineral was tennantite, were leached with an alkaline sulphide system. At a pulp density of 5 wt% solids with 100–150 g/L Na2S and 50 g/L NaOH, over 91 wt% As was dissolved within 2 h at 100°C. From concentrates containing 3.4–4.9 wt% As, leach residues containing <0.5 wt% As were obtained making them suitable as a smelter feed without a penalty for arsenic. Copper dissolution ranged from 16 to 22 wt% Cu, with significant amounts of calcium, iron and sulphur also dissolved. In a leach at 34.0 wt% solids, excellent arsenic extraction was obtained (97.9 wt% As), but the levels of copper, calcium, and iron dissolution were 0.5, 1.1, and 0.2 wt%, respectively, meaning excellent selectivity for arsenic was achieved. X-ray diffraction and electron probe microanalyses indicated the mechanism for arsenic dissolution from tennantite, and bornite abundance in the residue.\",\"PeriodicalId\":43710,\"journal\":{\"name\":\"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy\",\"volume\":\"131 1\",\"pages\":\"229 - 238\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25726641.2021.1948319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726641.2021.1948319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 2

摘要

摘要采用碱性硫化物体系浸出高砷铜浮选精矿,其主要含砷矿物为辉铜矿。纸浆密度为5 固体重量百分比,100–150 g/L Na2S和50 g/L NaOH,超过91 重量%的As在2 h。来自含3.4–4.9的精矿 重量百分比As,浸出残渣含量<0.5 获得了wt%的As,使得它们适合作为冶炼厂进料而不会对砷造成惩罚。铜的溶解范围为16-22 wt%的Cu,同时也溶解了大量的钙、铁和硫。在34.0的浸出中 固体含量为wt%时,获得了良好的砷萃取(97.9 重量%As),但铜、钙和铁的溶解水平分别为0.5、1.1和0.2 wt%,这意味着实现了对砷的优异选择性。X射线衍射和电子探针微量分析表明了砷从辉铜矿中溶解的机制,以及残留物中的斑铜矿丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alkaline sulphide leaching of tennantite in copper flotation concentrates to selectively dissolve arsenic
ABSTRACT High-arsenic copper flotation concentrates, in which the major arsenic-bearing mineral was tennantite, were leached with an alkaline sulphide system. At a pulp density of 5 wt% solids with 100–150 g/L Na2S and 50 g/L NaOH, over 91 wt% As was dissolved within 2 h at 100°C. From concentrates containing 3.4–4.9 wt% As, leach residues containing <0.5 wt% As were obtained making them suitable as a smelter feed without a penalty for arsenic. Copper dissolution ranged from 16 to 22 wt% Cu, with significant amounts of calcium, iron and sulphur also dissolved. In a leach at 34.0 wt% solids, excellent arsenic extraction was obtained (97.9 wt% As), but the levels of copper, calcium, and iron dissolution were 0.5, 1.1, and 0.2 wt%, respectively, meaning excellent selectivity for arsenic was achieved. X-ray diffraction and electron probe microanalyses indicated the mechanism for arsenic dissolution from tennantite, and bornite abundance in the residue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信