{"title":"无分布预测推理的训练条件覆盖","authors":"Michael Bian, R. Barber","doi":"10.1214/23-ejs2145","DOIUrl":null,"url":null,"abstract":"The field of distribution-free predictive inference provides tools for provably valid prediction without any assumptions on the distribution of the data, which can be paired with any regression algorithm to provide accurate and reliable predictive intervals. The guarantees provided by these methods are typically marginal, meaning that predictive accuracy holds on average over both the training data set and the test point that is queried. However, it may be preferable to obtain a stronger guarantee of training-conditional coverage, which would ensure that most draws of the training data set result in accurate predictive accuracy on future test points. This property is known to hold for the split conformal prediction method. In this work, we examine the training-conditional coverage properties of several other distribution-free predictive inference methods, and find that training-conditional coverage is achieved by some methods but is impossible to guarantee without further assumptions for others.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Training-conditional coverage for distribution-free predictive inference\",\"authors\":\"Michael Bian, R. Barber\",\"doi\":\"10.1214/23-ejs2145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of distribution-free predictive inference provides tools for provably valid prediction without any assumptions on the distribution of the data, which can be paired with any regression algorithm to provide accurate and reliable predictive intervals. The guarantees provided by these methods are typically marginal, meaning that predictive accuracy holds on average over both the training data set and the test point that is queried. However, it may be preferable to obtain a stronger guarantee of training-conditional coverage, which would ensure that most draws of the training data set result in accurate predictive accuracy on future test points. This property is known to hold for the split conformal prediction method. In this work, we examine the training-conditional coverage properties of several other distribution-free predictive inference methods, and find that training-conditional coverage is achieved by some methods but is impossible to guarantee without further assumptions for others.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2145\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejs2145","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Training-conditional coverage for distribution-free predictive inference
The field of distribution-free predictive inference provides tools for provably valid prediction without any assumptions on the distribution of the data, which can be paired with any regression algorithm to provide accurate and reliable predictive intervals. The guarantees provided by these methods are typically marginal, meaning that predictive accuracy holds on average over both the training data set and the test point that is queried. However, it may be preferable to obtain a stronger guarantee of training-conditional coverage, which would ensure that most draws of the training data set result in accurate predictive accuracy on future test points. This property is known to hold for the split conformal prediction method. In this work, we examine the training-conditional coverage properties of several other distribution-free predictive inference methods, and find that training-conditional coverage is achieved by some methods but is impossible to guarantee without further assumptions for others.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.