2-边色多部分图的长单色路径和循环

Q4 Mathematics
J. Balogh, A. Kostochka, Mikhail Lavrov, Xujun Liu
{"title":"2-边色多部分图的长单色路径和循环","authors":"J. Balogh, A. Kostochka, Mikhail Lavrov, Xujun Liu","doi":"10.2140/moscow.2020.9.55","DOIUrl":null,"url":null,"abstract":"We solve four similar problems: For every fixed $s$ and large $n$, we describe all values of $n_1,\\ldots,n_s$ such that for every $2$-edge-coloring of the complete $s$-partite graph $K_{n_1,\\ldots,n_s}$ there exists a monochromatic (i) cycle $C_{2n}$ with $2n$ vertices, (ii) cycle $C_{\\geq 2n}$ with at least $2n$ vertices, (iii) path $P_{2n}$ with $2n$ vertices, and (iv) path $P_{2n+1}$ with $2n+1$ vertices. \nThis implies a generalization for large $n$ of the conjecture by Gyarfas, Ruszinko, Sarkőzy and Szemeredi that for every $2$-edge-coloring of the complete $3$-partite graph $K_{n,n,n}$ there is a monochromatic path $P_{2n+1}$. An important tool is our recent stability theorem on monochromatic connected matchings.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2020.9.55","citationCount":"6","resultStr":"{\"title\":\"Long monochromatic paths and cycles in 2-edge-colored multipartite graphs\",\"authors\":\"J. Balogh, A. Kostochka, Mikhail Lavrov, Xujun Liu\",\"doi\":\"10.2140/moscow.2020.9.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve four similar problems: For every fixed $s$ and large $n$, we describe all values of $n_1,\\\\ldots,n_s$ such that for every $2$-edge-coloring of the complete $s$-partite graph $K_{n_1,\\\\ldots,n_s}$ there exists a monochromatic (i) cycle $C_{2n}$ with $2n$ vertices, (ii) cycle $C_{\\\\geq 2n}$ with at least $2n$ vertices, (iii) path $P_{2n}$ with $2n$ vertices, and (iv) path $P_{2n+1}$ with $2n+1$ vertices. \\nThis implies a generalization for large $n$ of the conjecture by Gyarfas, Ruszinko, Sarkőzy and Szemeredi that for every $2$-edge-coloring of the complete $3$-partite graph $K_{n,n,n}$ there is a monochromatic path $P_{2n+1}$. An important tool is our recent stability theorem on monochromatic connected matchings.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2020.9.55\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2020.9.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2020.9.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

我们解决了四个类似的问题:对于每个固定的$s$和大的$n$,我们描述$n_1,\ldots,n_s$的所有值,使得对于完整的$s$-部分图$K_{n_1,\ ldots,n_s}$的每$2$-边着色,存在一个单色的(i)具有$2n$顶点的循环$C_{2n}$,以及(iv)具有$2n+1$个顶点的路径$P_{2n+1}$。这意味着Gyarfas、Ruszinko、Sarkõzy和Szemerdi猜想的大$n$的推广,即对于完整的$3$-部分图$K_{n,n,n}$的每$2$-边着色,都有一条单色路径$P_{2n+1}$。一个重要的工具是我们最近关于单色连通匹配的稳定性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long monochromatic paths and cycles in 2-edge-colored multipartite graphs
We solve four similar problems: For every fixed $s$ and large $n$, we describe all values of $n_1,\ldots,n_s$ such that for every $2$-edge-coloring of the complete $s$-partite graph $K_{n_1,\ldots,n_s}$ there exists a monochromatic (i) cycle $C_{2n}$ with $2n$ vertices, (ii) cycle $C_{\geq 2n}$ with at least $2n$ vertices, (iii) path $P_{2n}$ with $2n$ vertices, and (iv) path $P_{2n+1}$ with $2n+1$ vertices. This implies a generalization for large $n$ of the conjecture by Gyarfas, Ruszinko, Sarkőzy and Szemeredi that for every $2$-edge-coloring of the complete $3$-partite graph $K_{n,n,n}$ there is a monochromatic path $P_{2n+1}$. An important tool is our recent stability theorem on monochromatic connected matchings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信