切削过程中金属变形塑性区边界的确定

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Kurin
{"title":"切削过程中金属变形塑性区边界的确定","authors":"M. Kurin","doi":"10.15407/ufm.21.02.249","DOIUrl":null,"url":null,"abstract":"The main objective of this work is to analyse the problem of determining the boundary of elastoplastic zone with various methods of machining parts by cutting. The structure of complex theoretical and experimental studies of energy–power parameters of the technological processes is considered. The method for calculating the processes of plastic deformation of metals based on a closed set of equations of continuum mechanics is proposed for the theoretical study of energy–power parameters of the technological processes. The expressions, which make possible the reproduction of the spatial pattern of the strain distribution within the metal at the diamond smoothing and grinding, are obtained. This allows visualizing the mechanism of the deformation and simplifying the analysis of the deformed state of the material. Functional relationship between the power of the deformation and parameters of the machining conditions at the diamond smoothing and grinding is established. Various methods for determining the cutting forces during machining with chip removal as well as approaches to determining deflected mode of a material are considered. A method for express calculation of cutting forces using well-known engineering techniques is proposed. The experimental and calculated data on determination of the sizes of plastically deformable zone of difficult-to-cut materials are analysed. The mechanism of inhibition of dislocations and energy conversion during deformation is considered in detail. As a result, a dislocation–kinetic approach is developed, based on the concept of dislocation as a quasi-particle of a strain quantum. Using the dislocation–kinetic approach, the mathematical model is developed, which allows us to calculate a magnitude of the zone of leading cold hardening that is confirmed by comparison with experimental data. The Starkov’s model is improved; the physical meaning of coefficient in formulas for calculating boundaries of cold-hardening zones is explained. A new similarity criterion is introduced, which relates dissipation of plastic strain energy and rate of rearranging of temperature field.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Determination of the Boundaries of Plastic Zone of Metal Deformation During the Cutting\",\"authors\":\"M. Kurin\",\"doi\":\"10.15407/ufm.21.02.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this work is to analyse the problem of determining the boundary of elastoplastic zone with various methods of machining parts by cutting. The structure of complex theoretical and experimental studies of energy–power parameters of the technological processes is considered. The method for calculating the processes of plastic deformation of metals based on a closed set of equations of continuum mechanics is proposed for the theoretical study of energy–power parameters of the technological processes. The expressions, which make possible the reproduction of the spatial pattern of the strain distribution within the metal at the diamond smoothing and grinding, are obtained. This allows visualizing the mechanism of the deformation and simplifying the analysis of the deformed state of the material. Functional relationship between the power of the deformation and parameters of the machining conditions at the diamond smoothing and grinding is established. Various methods for determining the cutting forces during machining with chip removal as well as approaches to determining deflected mode of a material are considered. A method for express calculation of cutting forces using well-known engineering techniques is proposed. The experimental and calculated data on determination of the sizes of plastically deformable zone of difficult-to-cut materials are analysed. The mechanism of inhibition of dislocations and energy conversion during deformation is considered in detail. As a result, a dislocation–kinetic approach is developed, based on the concept of dislocation as a quasi-particle of a strain quantum. Using the dislocation–kinetic approach, the mathematical model is developed, which allows us to calculate a magnitude of the zone of leading cold hardening that is confirmed by comparison with experimental data. The Starkov’s model is improved; the physical meaning of coefficient in formulas for calculating boundaries of cold-hardening zones is explained. A new similarity criterion is introduced, which relates dissipation of plastic strain energy and rate of rearranging of temperature field.\",\"PeriodicalId\":41786,\"journal\":{\"name\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ufm.21.02.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ufm.21.02.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

本工作的主要目的是分析用切削加工零件的各种方法确定弹塑性区边界的问题。考虑了工艺过程中能量-功率参数的复杂理论和实验研究的结构。提出了一种基于连续介质力学封闭方程组的金属塑性变形过程计算方法,用于工艺过程能量-功率参数的理论研究。得到了金刚石光滑和磨削过程中金属内部应变分布的空间分布规律。这使变形的机制可视化,并简化了材料变形状态的分析。建立了金刚石光磨时变形功率与加工条件参数之间的函数关系。考虑了在切削过程中确定切削力的各种方法,以及确定材料偏转模式的方法。提出了一种利用工程技术进行切削力表达式计算的方法。分析了确定难切削材料塑性变形区尺寸的实验数据和计算数据。详细讨论了变形过程中位错抑制和能量转换的机理。因此,基于位错作为应变量子的准粒子的概念,提出了位错动力学方法。利用位错动力学方法,建立了数学模型,计算出冷硬化超前区的大小,并与实验数据进行了比较。斯塔科夫的模型得到了改进;说明了冷硬化区边界计算公式中系数的物理意义。提出了一种将塑性应变能耗散与温度场重排率联系起来的相似准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the Boundaries of Plastic Zone of Metal Deformation During the Cutting
The main objective of this work is to analyse the problem of determining the boundary of elastoplastic zone with various methods of machining parts by cutting. The structure of complex theoretical and experimental studies of energy–power parameters of the technological processes is considered. The method for calculating the processes of plastic deformation of metals based on a closed set of equations of continuum mechanics is proposed for the theoretical study of energy–power parameters of the technological processes. The expressions, which make possible the reproduction of the spatial pattern of the strain distribution within the metal at the diamond smoothing and grinding, are obtained. This allows visualizing the mechanism of the deformation and simplifying the analysis of the deformed state of the material. Functional relationship between the power of the deformation and parameters of the machining conditions at the diamond smoothing and grinding is established. Various methods for determining the cutting forces during machining with chip removal as well as approaches to determining deflected mode of a material are considered. A method for express calculation of cutting forces using well-known engineering techniques is proposed. The experimental and calculated data on determination of the sizes of plastically deformable zone of difficult-to-cut materials are analysed. The mechanism of inhibition of dislocations and energy conversion during deformation is considered in detail. As a result, a dislocation–kinetic approach is developed, based on the concept of dislocation as a quasi-particle of a strain quantum. Using the dislocation–kinetic approach, the mathematical model is developed, which allows us to calculate a magnitude of the zone of leading cold hardening that is confirmed by comparison with experimental data. The Starkov’s model is improved; the physical meaning of coefficient in formulas for calculating boundaries of cold-hardening zones is explained. A new similarity criterion is introduced, which relates dissipation of plastic strain energy and rate of rearranging of temperature field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
18.80%
发文量
21
审稿时长
13 weeks
期刊介绍: The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信