生成多项式和多个zeta值的函数

IF 0.4 4区 数学 Q4 MATHEMATICS
M. Hirose, H. Murahara, Shingo Saito
{"title":"生成多项式和多个zeta值的函数","authors":"M. Hirose, H. Murahara, Shingo Saito","doi":"10.2748/tmj.20210409","DOIUrl":null,"url":null,"abstract":"The sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values bear a striking resemblance. We explain the resemblance in a rather straightforward manner using an identity that involves the Schur multiple zeta values. We also obtain the sum formula for polynomial multiple zeta(-star) values in terms of generating functions, simultaneously generalizing the sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generating functions for sums of polynomial multiple zeta values\",\"authors\":\"M. Hirose, H. Murahara, Shingo Saito\",\"doi\":\"10.2748/tmj.20210409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values bear a striking resemblance. We explain the resemblance in a rather straightforward manner using an identity that involves the Schur multiple zeta values. We also obtain the sum formula for polynomial multiple zeta(-star) values in terms of generating functions, simultaneously generalizing the sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20210409\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20210409","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

多个zeta(-star)值和对称多个zeta(-star)值的和公式具有惊人的相似之处。我们用一个涉及舒尔多重泽塔值的恒等式以一种相当直接的方式解释这种相似性。我们还从生成函数的角度得到了多项式多个zeta(-星)值的和公式,同时推广了多个zeta(-星)值和对称多个zeta(-星)值的和公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating functions for sums of polynomial multiple zeta values
The sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values bear a striking resemblance. We explain the resemblance in a rather straightforward manner using an identity that involves the Schur multiple zeta values. We also obtain the sum formula for polynomial multiple zeta(-star) values in terms of generating functions, simultaneously generalizing the sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信