{"title":"生成多项式和多个zeta值的函数","authors":"M. Hirose, H. Murahara, Shingo Saito","doi":"10.2748/tmj.20210409","DOIUrl":null,"url":null,"abstract":"The sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values bear a striking resemblance. We explain the resemblance in a rather straightforward manner using an identity that involves the Schur multiple zeta values. We also obtain the sum formula for polynomial multiple zeta(-star) values in terms of generating functions, simultaneously generalizing the sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generating functions for sums of polynomial multiple zeta values\",\"authors\":\"M. Hirose, H. Murahara, Shingo Saito\",\"doi\":\"10.2748/tmj.20210409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values bear a striking resemblance. We explain the resemblance in a rather straightforward manner using an identity that involves the Schur multiple zeta values. We also obtain the sum formula for polynomial multiple zeta(-star) values in terms of generating functions, simultaneously generalizing the sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20210409\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20210409","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generating functions for sums of polynomial multiple zeta values
The sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values bear a striking resemblance. We explain the resemblance in a rather straightforward manner using an identity that involves the Schur multiple zeta values. We also obtain the sum formula for polynomial multiple zeta(-star) values in terms of generating functions, simultaneously generalizing the sum formulas for multiple zeta(-star) values and symmetric multiple zeta(-star) values.