{"title":"利用凹凸纹理表面改善径向滑动轴承的动态性能","authors":"","doi":"10.4018/ijseims.295093","DOIUrl":null,"url":null,"abstract":"In the present numerical study, the effect of V-shape textures on the dynamic performance characteristic of hydrodynamic journal bearing is obtained by using fluid flow governing Reynold’s equation which has been solved with finite element method (FEM) by assuming that the fluid is Newtonian and iso-viscous in nature. Four different cases of texture depths/heights and distributions have been selected to compute the dynamic performance parameters (non-dimensional damping, stiffness and threshold frequency) and compared with un-textured hydrodynamic bearing. From simulated results, the maximum value of direct stiffness and damping coefficient for protruded textured bearing is found at full textured bearing and second half textured region as compared to dimple and un-textured bearing respectively. The value of threshold speed is maximum for fully textured region at higher value texture depth and eccentricity ratio for dimple textured bearing. Similarly its value is higher at higher texture height operating at lower eccentricity ratio for protruded bearings.","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Performance Improvement of Journal Bearing by using Dimple and Protruded Textured Surfaces\",\"authors\":\"\",\"doi\":\"10.4018/ijseims.295093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present numerical study, the effect of V-shape textures on the dynamic performance characteristic of hydrodynamic journal bearing is obtained by using fluid flow governing Reynold’s equation which has been solved with finite element method (FEM) by assuming that the fluid is Newtonian and iso-viscous in nature. Four different cases of texture depths/heights and distributions have been selected to compute the dynamic performance parameters (non-dimensional damping, stiffness and threshold frequency) and compared with un-textured hydrodynamic bearing. From simulated results, the maximum value of direct stiffness and damping coefficient for protruded textured bearing is found at full textured bearing and second half textured region as compared to dimple and un-textured bearing respectively. The value of threshold speed is maximum for fully textured region at higher value texture depth and eccentricity ratio for dimple textured bearing. Similarly its value is higher at higher texture height operating at lower eccentricity ratio for protruded bearings.\",\"PeriodicalId\":37123,\"journal\":{\"name\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijseims.295093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijseims.295093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Dynamic Performance Improvement of Journal Bearing by using Dimple and Protruded Textured Surfaces
In the present numerical study, the effect of V-shape textures on the dynamic performance characteristic of hydrodynamic journal bearing is obtained by using fluid flow governing Reynold’s equation which has been solved with finite element method (FEM) by assuming that the fluid is Newtonian and iso-viscous in nature. Four different cases of texture depths/heights and distributions have been selected to compute the dynamic performance parameters (non-dimensional damping, stiffness and threshold frequency) and compared with un-textured hydrodynamic bearing. From simulated results, the maximum value of direct stiffness and damping coefficient for protruded textured bearing is found at full textured bearing and second half textured region as compared to dimple and un-textured bearing respectively. The value of threshold speed is maximum for fully textured region at higher value texture depth and eccentricity ratio for dimple textured bearing. Similarly its value is higher at higher texture height operating at lower eccentricity ratio for protruded bearings.