M. Abu-Shawiesh, Juthaphorn Sinsomboonthong, B. M. G. Kibria
{"title":"基于十分位数的总体分布均值的一个改进鲁棒置信区间","authors":"M. Abu-Shawiesh, Juthaphorn Sinsomboonthong, B. M. G. Kibria","doi":"10.2478/stattrans-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract The confidence interval is an important statistical estimator of population location and dispersion parameters. The paper considers a robust modified confidence interval, which is an adjustment of the Student’s t confidence interval based on the decile mean and decile standard deviation for estimating the population mean of a skewed distribution. The efficiency of the proposed interval estimator is evaluated on the basis of an extensive Monte Carlo simulation study. The coverage ratio and average width of the proposed confidence interval are compared with certain existing and widely used confidence intervals. The simulation results show that, in general, the proposed interval estimator’s performance is highly effective. For illustrative purposes, three real-life data sets are analyzed, which, to a certain extent, support the findings obtained from the simulation study. Thus, we recommend that practitioners use the robust modified confidence interval for estimating the population mean when the data are generated by a normal or skewed distribution.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":"23 1","pages":"109 - 128"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A modified robust confidence interval for the population mean of distribution based on deciles\",\"authors\":\"M. Abu-Shawiesh, Juthaphorn Sinsomboonthong, B. M. G. Kibria\",\"doi\":\"10.2478/stattrans-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The confidence interval is an important statistical estimator of population location and dispersion parameters. The paper considers a robust modified confidence interval, which is an adjustment of the Student’s t confidence interval based on the decile mean and decile standard deviation for estimating the population mean of a skewed distribution. The efficiency of the proposed interval estimator is evaluated on the basis of an extensive Monte Carlo simulation study. The coverage ratio and average width of the proposed confidence interval are compared with certain existing and widely used confidence intervals. The simulation results show that, in general, the proposed interval estimator’s performance is highly effective. For illustrative purposes, three real-life data sets are analyzed, which, to a certain extent, support the findings obtained from the simulation study. Thus, we recommend that practitioners use the robust modified confidence interval for estimating the population mean when the data are generated by a normal or skewed distribution.\",\"PeriodicalId\":37985,\"journal\":{\"name\":\"Statistics in Transition\",\"volume\":\"23 1\",\"pages\":\"109 - 128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/stattrans-2022-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A modified robust confidence interval for the population mean of distribution based on deciles
Abstract The confidence interval is an important statistical estimator of population location and dispersion parameters. The paper considers a robust modified confidence interval, which is an adjustment of the Student’s t confidence interval based on the decile mean and decile standard deviation for estimating the population mean of a skewed distribution. The efficiency of the proposed interval estimator is evaluated on the basis of an extensive Monte Carlo simulation study. The coverage ratio and average width of the proposed confidence interval are compared with certain existing and widely used confidence intervals. The simulation results show that, in general, the proposed interval estimator’s performance is highly effective. For illustrative purposes, three real-life data sets are analyzed, which, to a certain extent, support the findings obtained from the simulation study. Thus, we recommend that practitioners use the robust modified confidence interval for estimating the population mean when the data are generated by a normal or skewed distribution.
期刊介绍:
Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.