基于LoRa的精准农业茶园有效载荷信息元数据建模

E. Nugroho, Taufik Djatna, I. S. Sitanggang, I. Hermadi, A. Mulyana, S. Wahjuni, Heru Sukoco
{"title":"基于LoRa的精准农业茶园有效载荷信息元数据建模","authors":"E. Nugroho, Taufik Djatna, I. S. Sitanggang, I. Hermadi, A. Mulyana, S. Wahjuni, Heru Sukoco","doi":"10.15294/sji.v10i2.43432","DOIUrl":null,"url":null,"abstract":"Purpose: The purpose of this study is to model the metadata of Payload Information on Agriculture Drones which consists of the results of images computational and the Onboard system of the Drone.Methods: The stages of the research were carried out with the process of forming Payload information metadata from the Agriculture Drone with sensors/actuators based on the architecture and computing with Image Processing or Computer Vision on the camera captures. This study describes the metadata modeling process formed from the Internet of Things system with Drone and GCS communication based on the Long Range or Long-Range Wide Area Network protocols with Payload information consisting of drone data and image computation results. Result: The result obtained is the formation of Payload information from LoRa-based Drones with a frame size of 142 bytes. Novelty: Payload information is formed into a metadata model indicator with the formation scheme being part of the tea plantation dataset. The metadata model will be test expected to obtain field data on Drones and GCS communication in the LoRaWAN Network in tea plantations which are rural environments. ","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metadata Modeling of LoRa Based Payload Information for Precision Agriculture Tea Plantation\",\"authors\":\"E. Nugroho, Taufik Djatna, I. S. Sitanggang, I. Hermadi, A. Mulyana, S. Wahjuni, Heru Sukoco\",\"doi\":\"10.15294/sji.v10i2.43432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: The purpose of this study is to model the metadata of Payload Information on Agriculture Drones which consists of the results of images computational and the Onboard system of the Drone.Methods: The stages of the research were carried out with the process of forming Payload information metadata from the Agriculture Drone with sensors/actuators based on the architecture and computing with Image Processing or Computer Vision on the camera captures. This study describes the metadata modeling process formed from the Internet of Things system with Drone and GCS communication based on the Long Range or Long-Range Wide Area Network protocols with Payload information consisting of drone data and image computation results. Result: The result obtained is the formation of Payload information from LoRa-based Drones with a frame size of 142 bytes. Novelty: Payload information is formed into a metadata model indicator with the formation scheme being part of the tea plantation dataset. The metadata model will be test expected to obtain field data on Drones and GCS communication in the LoRaWAN Network in tea plantations which are rural environments. \",\"PeriodicalId\":30781,\"journal\":{\"name\":\"Scientific Journal of Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/sji.v10i2.43432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v10i2.43432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究的目的是对农业无人机有效载荷信息的元数据进行建模,该元数据由图像计算结果和无人机机载系统组成相机上的图像处理或计算机视觉捕捉。本研究描述了基于远程或远程广域网协议的物联网系统与无人机和地面军事系统通信形成的元数据建模过程,有效载荷信息由无人机数据和图像计算结果组成。结果:获得的结果是从基于LoRa的无人机形成了帧大小为142字节的有效载荷信息。新颖性:有效载荷信息被形成元数据模型指标,形成方案是茶园数据集的一部分。元数据模型将进行测试,以获得农村茶园LoRaWAN网络中无人机和地面军事系统通信的现场数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metadata Modeling of LoRa Based Payload Information for Precision Agriculture Tea Plantation
Purpose: The purpose of this study is to model the metadata of Payload Information on Agriculture Drones which consists of the results of images computational and the Onboard system of the Drone.Methods: The stages of the research were carried out with the process of forming Payload information metadata from the Agriculture Drone with sensors/actuators based on the architecture and computing with Image Processing or Computer Vision on the camera captures. This study describes the metadata modeling process formed from the Internet of Things system with Drone and GCS communication based on the Long Range or Long-Range Wide Area Network protocols with Payload information consisting of drone data and image computation results. Result: The result obtained is the formation of Payload information from LoRa-based Drones with a frame size of 142 bytes. Novelty: Payload information is formed into a metadata model indicator with the formation scheme being part of the tea plantation dataset. The metadata model will be test expected to obtain field data on Drones and GCS communication in the LoRaWAN Network in tea plantations which are rural environments. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信