GAMLSS中的主成分回归应用于希腊-德国政府债券收益率差

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
D. S. Mikis, A. Robert, Georgikopoulos Nikolaos, Demaio Fernanda
{"title":"GAMLSS中的主成分回归应用于希腊-德国政府债券收益率差","authors":"D. S. Mikis, A. Robert, Georgikopoulos Nikolaos, Demaio Fernanda","doi":"10.1177/1471082X211022980","DOIUrl":null,"url":null,"abstract":"A solution to the problem of having to deal with a large number of interrelated explanatory variables within a generalized additive model for location, scale and shape (GAMLSS) is given here using as an example the Greek–German government bond yield spreads from 25 April 2005 to 31 March 2010. Those were turbulent financial years, and in order to capture the spreads behaviour, a model has to be able to deal with the complex nature of the financial indicators used to predict the spreads. Fitting a model, using principal components regression of both main and first order interaction terms, for all the parameters of the assumed distribution of the response variable seems to produce promising results.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X211022980","citationCount":"2","resultStr":"{\"title\":\"Principal component regression in GAMLSS applied to Greek–German government bond yield spreads\",\"authors\":\"D. S. Mikis, A. Robert, Georgikopoulos Nikolaos, Demaio Fernanda\",\"doi\":\"10.1177/1471082X211022980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A solution to the problem of having to deal with a large number of interrelated explanatory variables within a generalized additive model for location, scale and shape (GAMLSS) is given here using as an example the Greek–German government bond yield spreads from 25 April 2005 to 31 March 2010. Those were turbulent financial years, and in order to capture the spreads behaviour, a model has to be able to deal with the complex nature of the financial indicators used to predict the spreads. Fitting a model, using principal components regression of both main and first order interaction terms, for all the parameters of the assumed distribution of the response variable seems to produce promising results.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1471082X211022980\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X211022980\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X211022980","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文以2005年4月25日至2010年3月31日的希腊-德国政府债券收益率差为例,给出了在位置、规模和形状的广义加性模型(GAMLSS)中必须处理大量相互关联的解释变量的问题的解决方案。那是动荡的财政年,为了捕捉利差行为,模型必须能够处理用于预测利差的金融指标的复杂性质。对于响应变量假设分布的所有参数,使用主项和一阶相互作用项的主成分回归拟合模型似乎产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal component regression in GAMLSS applied to Greek–German government bond yield spreads
A solution to the problem of having to deal with a large number of interrelated explanatory variables within a generalized additive model for location, scale and shape (GAMLSS) is given here using as an example the Greek–German government bond yield spreads from 25 April 2005 to 31 March 2010. Those were turbulent financial years, and in order to capture the spreads behaviour, a model has to be able to deal with the complex nature of the financial indicators used to predict the spreads. Fitting a model, using principal components regression of both main and first order interaction terms, for all the parameters of the assumed distribution of the response variable seems to produce promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信