基于最大生成树和有向无环图的多标签分类器链算法

IF 0.8 Q4 Computer Science
Wenbiao Zhao, Runxin Li, Zhenhong Shang
{"title":"基于最大生成树和有向无环图的多标签分类器链算法","authors":"Wenbiao Zhao, Runxin Li, Zhenhong Shang","doi":"10.4018/ijitsa.324066","DOIUrl":null,"url":null,"abstract":"The classifier chains algorithm is aimed at solving the multilabel classification problem by composing the labels into a randomized label order. The classification effect of this algorithm depends heavily on whether the label order is optimal. To obtain a better label ordering, the authors propose a multilabel classifier chains algorithm based on a maximum spanning tree and a directed acyclic graph. The algorithm first uses Pearson's correlation coefficient to calculate the correlation between labels and constructs the maximum spanning tree of labels, then calculates the mutual decision difficulty between labels to transform the maximum spanning tree into a directed acyclic graph, and it uses topological ranking to output the optimized label ordering. Finally, the authors use the classifier chains algorithm to train and predict against this label ordering. Experimental comparisons were conducted between the proposed algorithm and other related algorithms on seven datasets, and the proposed algorithm ranked first and second in six evaluation metrics, accounting for 76.2% and 16.7%, respectively. The experimental results demonstrated the effectiveness of the proposed algorithm and affirmed its contribution in exploring and utilizing label-related information.","PeriodicalId":52019,"journal":{"name":"International Journal of Information Technologies and Systems Approach","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilabel Classifier Chains Algorithm Based on Maximum Spanning Tree and Directed Acyclic Graph\",\"authors\":\"Wenbiao Zhao, Runxin Li, Zhenhong Shang\",\"doi\":\"10.4018/ijitsa.324066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classifier chains algorithm is aimed at solving the multilabel classification problem by composing the labels into a randomized label order. The classification effect of this algorithm depends heavily on whether the label order is optimal. To obtain a better label ordering, the authors propose a multilabel classifier chains algorithm based on a maximum spanning tree and a directed acyclic graph. The algorithm first uses Pearson's correlation coefficient to calculate the correlation between labels and constructs the maximum spanning tree of labels, then calculates the mutual decision difficulty between labels to transform the maximum spanning tree into a directed acyclic graph, and it uses topological ranking to output the optimized label ordering. Finally, the authors use the classifier chains algorithm to train and predict against this label ordering. Experimental comparisons were conducted between the proposed algorithm and other related algorithms on seven datasets, and the proposed algorithm ranked first and second in six evaluation metrics, accounting for 76.2% and 16.7%, respectively. The experimental results demonstrated the effectiveness of the proposed algorithm and affirmed its contribution in exploring and utilizing label-related information.\",\"PeriodicalId\":52019,\"journal\":{\"name\":\"International Journal of Information Technologies and Systems Approach\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technologies and Systems Approach\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitsa.324066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technologies and Systems Approach","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitsa.324066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

分类器链算法旨在通过将标签组合成随机的标签顺序来解决多标签分类问题。该算法的分类效果很大程度上取决于标签顺序是否最优。为了获得更好的标签排序,作者提出了一种基于最大生成树和有向无环图的多标签分类器链算法。该算法首先利用Pearson相关系数计算标签之间的相关性,构造标签的最大生成树,然后计算标签之间的相互决策难度,将最大生成树转化为有向无环图,并利用拓扑排序输出优化后的标签排序。最后,作者使用分类器链算法对这种标签排序进行训练和预测。在7个数据集上与其他相关算法进行实验比较,该算法在6个评价指标中分别排名第一和第二,分别占76.2%和16.7%。实验结果证明了该算法的有效性,肯定了其在标签相关信息挖掘和利用方面的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilabel Classifier Chains Algorithm Based on Maximum Spanning Tree and Directed Acyclic Graph
The classifier chains algorithm is aimed at solving the multilabel classification problem by composing the labels into a randomized label order. The classification effect of this algorithm depends heavily on whether the label order is optimal. To obtain a better label ordering, the authors propose a multilabel classifier chains algorithm based on a maximum spanning tree and a directed acyclic graph. The algorithm first uses Pearson's correlation coefficient to calculate the correlation between labels and constructs the maximum spanning tree of labels, then calculates the mutual decision difficulty between labels to transform the maximum spanning tree into a directed acyclic graph, and it uses topological ranking to output the optimized label ordering. Finally, the authors use the classifier chains algorithm to train and predict against this label ordering. Experimental comparisons were conducted between the proposed algorithm and other related algorithms on seven datasets, and the proposed algorithm ranked first and second in six evaluation metrics, accounting for 76.2% and 16.7%, respectively. The experimental results demonstrated the effectiveness of the proposed algorithm and affirmed its contribution in exploring and utilizing label-related information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
12.50%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信