{"title":"模型验证实验的优化选择:以覆盖率为指导","authors":"Robert Hällqvist, R. Braun, M. Eek, P. Krus","doi":"10.1115/1.4051497","DOIUrl":null,"url":null,"abstract":"\n Modeling and Simulation (M&S) is seen as a means to mitigate the difficulties associated with increased system complexity, integration, and cross-couplings effects encountered during development of aircraft subsystems. As a consequence, knowledge of model validity is necessary for taking robust and justified design decisions. This paper presents a method for using coverage metrics to formulate an optimal model validation strategy. Three fundamentally different and industrially relevant use-cases are presented. The first use-case entails the successive identification of validation settings, and the second considers the simultaneous identification of n validation settings. The latter of these two use-cases is finally expanded to incorporate a secondary model-based objective to the optimization problem in a third use-case. The approach presented is designed to be scalable and generic to models of industrially relevant complexity. As a result, selecting experiments for validation is done objectively with little required manual effort.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Selection of Model Validation Experiments: Guided by Coverage\",\"authors\":\"Robert Hällqvist, R. Braun, M. Eek, P. Krus\",\"doi\":\"10.1115/1.4051497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Modeling and Simulation (M&S) is seen as a means to mitigate the difficulties associated with increased system complexity, integration, and cross-couplings effects encountered during development of aircraft subsystems. As a consequence, knowledge of model validity is necessary for taking robust and justified design decisions. This paper presents a method for using coverage metrics to formulate an optimal model validation strategy. Three fundamentally different and industrially relevant use-cases are presented. The first use-case entails the successive identification of validation settings, and the second considers the simultaneous identification of n validation settings. The latter of these two use-cases is finally expanded to incorporate a secondary model-based objective to the optimization problem in a third use-case. The approach presented is designed to be scalable and generic to models of industrially relevant complexity. As a result, selecting experiments for validation is done objectively with little required manual effort.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Optimal Selection of Model Validation Experiments: Guided by Coverage
Modeling and Simulation (M&S) is seen as a means to mitigate the difficulties associated with increased system complexity, integration, and cross-couplings effects encountered during development of aircraft subsystems. As a consequence, knowledge of model validity is necessary for taking robust and justified design decisions. This paper presents a method for using coverage metrics to formulate an optimal model validation strategy. Three fundamentally different and industrially relevant use-cases are presented. The first use-case entails the successive identification of validation settings, and the second considers the simultaneous identification of n validation settings. The latter of these two use-cases is finally expanded to incorporate a secondary model-based objective to the optimization problem in a third use-case. The approach presented is designed to be scalable and generic to models of industrially relevant complexity. As a result, selecting experiments for validation is done objectively with little required manual effort.