一个R包,用于计算截断多元正态分布中的矩

IF 0.5 Q4 STATISTICS & PROBABILITY
Seung-Chun Lee
{"title":"一个R包,用于计算截断多元正态分布中的矩","authors":"Seung-Chun Lee","doi":"10.29220/csam.2021.28.6.673","DOIUrl":null,"url":null,"abstract":"The moment calculation in a truncated multivariate normal distribution is a long-standing problem in statistical computation. Recently, Kan and Robotti (2017) developed an algorithm able to calculate all orders of moment under di ff erent types of truncation. This result was implemented in an R package MomTrunc by Galarza et al. (2021); however, it is di ffi cult to use the package in practical statistical problems because the computational burden increases exponentially as the order of the moment or the dimension of the random vector increases. Meanwhile, Lee (2021) presented an e ffi cient numerical method in both accuracy and computational burden using Gauss-Hermit quadrature. This article introduces trunmnt implementation of Lee’s work as an R package. The Package is believed to be useful for moment calculations in most practical statistical problems.","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"trunmnt: An R package for calculating moments in a truncated multivariate normal distribution\",\"authors\":\"Seung-Chun Lee\",\"doi\":\"10.29220/csam.2021.28.6.673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The moment calculation in a truncated multivariate normal distribution is a long-standing problem in statistical computation. Recently, Kan and Robotti (2017) developed an algorithm able to calculate all orders of moment under di ff erent types of truncation. This result was implemented in an R package MomTrunc by Galarza et al. (2021); however, it is di ffi cult to use the package in practical statistical problems because the computational burden increases exponentially as the order of the moment or the dimension of the random vector increases. Meanwhile, Lee (2021) presented an e ffi cient numerical method in both accuracy and computational burden using Gauss-Hermit quadrature. This article introduces trunmnt implementation of Lee’s work as an R package. The Package is believed to be useful for moment calculations in most practical statistical problems.\",\"PeriodicalId\":44931,\"journal\":{\"name\":\"Communications for Statistical Applications and Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications for Statistical Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29220/csam.2021.28.6.673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications for Statistical Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29220/csam.2021.28.6.673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

截断多元正态分布中的矩计算是统计计算中一个长期存在的问题。最近,Kan和Robotti(2017)开发了一种算法,能够在不同类型的截断下计算所有阶矩。Galarza等人在R包MomTrunc中实现了这一结果。(2021);然而,在实际的统计问题中使用该包是困难的,因为计算负担随着矩的阶数或随机向量的维数的增加而呈指数级增加。同时,Lee(2021)提出了一种使用高斯-埃尔米特求积在精度和计算负担方面都很有效的数值方法。本文以R包的形式介绍了李作品的集群实现。该软件包被认为对大多数实际统计问题中的力矩计算有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
trunmnt: An R package for calculating moments in a truncated multivariate normal distribution
The moment calculation in a truncated multivariate normal distribution is a long-standing problem in statistical computation. Recently, Kan and Robotti (2017) developed an algorithm able to calculate all orders of moment under di ff erent types of truncation. This result was implemented in an R package MomTrunc by Galarza et al. (2021); however, it is di ffi cult to use the package in practical statistical problems because the computational burden increases exponentially as the order of the moment or the dimension of the random vector increases. Meanwhile, Lee (2021) presented an e ffi cient numerical method in both accuracy and computational burden using Gauss-Hermit quadrature. This article introduces trunmnt implementation of Lee’s work as an R package. The Package is believed to be useful for moment calculations in most practical statistical problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
49
期刊介绍: Communications for Statistical Applications and Methods (Commun. Stat. Appl. Methods, CSAM) is an official journal of the Korean Statistical Society and Korean International Statistical Society. It is an international and Open Access journal dedicated to publishing peer-reviewed, high quality and innovative statistical research. CSAM publishes articles on applied and methodological research in the areas of statistics and probability. It features rapid publication and broad coverage of statistical applications and methods. It welcomes papers on novel applications of statistical methodology in the areas including medicine (pharmaceutical, biotechnology, medical device), business, management, economics, ecology, education, computing, engineering, operational research, biology, sociology and earth science, but papers from other areas are also considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信