Roslinda Fauzi, R. Daik, Basirah Fauzi, S. N. L. Mamauod
{"title":"N,N-二乙基乙醇氯化铵/乙二醇基DES替代离子液体的理化性质","authors":"Roslinda Fauzi, R. Daik, Basirah Fauzi, S. N. L. Mamauod","doi":"10.1115/1.4056638","DOIUrl":null,"url":null,"abstract":"\n Ionic Liquids (ILs) that are used in the market nowadays have high complexity of processing, high viscosity and high toxicity in comparison to deep eutectic solvent (DES). Deep eutectic solvent is typically used in thermal energy storage, separation and extraction process or electrochemistry field. This study focuses on determining the physicochemical properties of DES, which are thermal conductivity, viscosity, and surface tension. Deep Eutectic Solvent was prepared by mixing hydrogen bond donor (HBD) compounds (ethylene glycol) and hydrogen bond acceptor (HBA) compounds (N,N-Diethylethanolammonium chloride) at different molar compositions. The data shows that the molar ratio HBA:HBD of 1:2 resulted in optimized values of thermal conductivity (0.218 W/mK), low viscosity (38.1 cP) and high surface tension (54 mN/m). Most notably, DES is capable of sustaining in a liquid phase at ambient condition (25°C) for more than 30 days. FTIR spectrum did not indicate any presence of a new peak. This established that only delocalization of ions occurred, and hence chemical transformations did not take place during mixing. The data obtained showed that the new synthesized solvent (DES) possess better result than the ILs. Therefore, DES can be proposed to replace the dependency to ILs.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical Properties of N,N-Diethylethanolammonium Chloride/Ethylene Glycol based DES for Replacement of Ionic Liquid\",\"authors\":\"Roslinda Fauzi, R. Daik, Basirah Fauzi, S. N. L. Mamauod\",\"doi\":\"10.1115/1.4056638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Ionic Liquids (ILs) that are used in the market nowadays have high complexity of processing, high viscosity and high toxicity in comparison to deep eutectic solvent (DES). Deep eutectic solvent is typically used in thermal energy storage, separation and extraction process or electrochemistry field. This study focuses on determining the physicochemical properties of DES, which are thermal conductivity, viscosity, and surface tension. Deep Eutectic Solvent was prepared by mixing hydrogen bond donor (HBD) compounds (ethylene glycol) and hydrogen bond acceptor (HBA) compounds (N,N-Diethylethanolammonium chloride) at different molar compositions. The data shows that the molar ratio HBA:HBD of 1:2 resulted in optimized values of thermal conductivity (0.218 W/mK), low viscosity (38.1 cP) and high surface tension (54 mN/m). Most notably, DES is capable of sustaining in a liquid phase at ambient condition (25°C) for more than 30 days. FTIR spectrum did not indicate any presence of a new peak. This established that only delocalization of ions occurred, and hence chemical transformations did not take place during mixing. The data obtained showed that the new synthesized solvent (DES) possess better result than the ILs. Therefore, DES can be proposed to replace the dependency to ILs.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056638\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056638","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Physicochemical Properties of N,N-Diethylethanolammonium Chloride/Ethylene Glycol based DES for Replacement of Ionic Liquid
Ionic Liquids (ILs) that are used in the market nowadays have high complexity of processing, high viscosity and high toxicity in comparison to deep eutectic solvent (DES). Deep eutectic solvent is typically used in thermal energy storage, separation and extraction process or electrochemistry field. This study focuses on determining the physicochemical properties of DES, which are thermal conductivity, viscosity, and surface tension. Deep Eutectic Solvent was prepared by mixing hydrogen bond donor (HBD) compounds (ethylene glycol) and hydrogen bond acceptor (HBA) compounds (N,N-Diethylethanolammonium chloride) at different molar compositions. The data shows that the molar ratio HBA:HBD of 1:2 resulted in optimized values of thermal conductivity (0.218 W/mK), low viscosity (38.1 cP) and high surface tension (54 mN/m). Most notably, DES is capable of sustaining in a liquid phase at ambient condition (25°C) for more than 30 days. FTIR spectrum did not indicate any presence of a new peak. This established that only delocalization of ions occurred, and hence chemical transformations did not take place during mixing. The data obtained showed that the new synthesized solvent (DES) possess better result than the ILs. Therefore, DES can be proposed to replace the dependency to ILs.
期刊介绍:
The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.