Leonardo Inforsato, S. Iden, W. Durner, A. Peters, Q. de Jong van Lier
{"title":"改进了简化蒸发法计算土壤导流系数的方法","authors":"Leonardo Inforsato, S. Iden, W. Durner, A. Peters, Q. de Jong van Lier","doi":"10.1002/vzj2.20267","DOIUrl":null,"url":null,"abstract":"Numerical modeling of soil water dynamics and storage is generally based on the Richards equation. Its solution requires knowledge of the soil hydraulic properties (SHP): the soil water retention function and the hydraulic conductivity function. To determine SHP, laboratory evaporation experiments are particularly popular because they provide data for both SHP functions. The evaluation by the simplified evaporation method (SEM) method, originally proposed by Schindler and subsequently improved by several authors, relies on linearization assumptions that allow for a relatively simple calculation scheme but result in biased conductivity data for some soils. The objective of this study is to propose and test an improved computational scheme for the hydraulic conductivity function. We present the new theory and show that it leads generally to higher accuracy of the conductivity function. The improvement is most pronounced for sandy soils and soil water pressure heads below −100 cm, where the original method provided data with bias.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved calculation of soil hydraulic conductivity with the simplified evaporation method\",\"authors\":\"Leonardo Inforsato, S. Iden, W. Durner, A. Peters, Q. de Jong van Lier\",\"doi\":\"10.1002/vzj2.20267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical modeling of soil water dynamics and storage is generally based on the Richards equation. Its solution requires knowledge of the soil hydraulic properties (SHP): the soil water retention function and the hydraulic conductivity function. To determine SHP, laboratory evaporation experiments are particularly popular because they provide data for both SHP functions. The evaluation by the simplified evaporation method (SEM) method, originally proposed by Schindler and subsequently improved by several authors, relies on linearization assumptions that allow for a relatively simple calculation scheme but result in biased conductivity data for some soils. The objective of this study is to propose and test an improved computational scheme for the hydraulic conductivity function. We present the new theory and show that it leads generally to higher accuracy of the conductivity function. The improvement is most pronounced for sandy soils and soil water pressure heads below −100 cm, where the original method provided data with bias.\",\"PeriodicalId\":23594,\"journal\":{\"name\":\"Vadose Zone Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vadose Zone Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20267\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20267","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Improved calculation of soil hydraulic conductivity with the simplified evaporation method
Numerical modeling of soil water dynamics and storage is generally based on the Richards equation. Its solution requires knowledge of the soil hydraulic properties (SHP): the soil water retention function and the hydraulic conductivity function. To determine SHP, laboratory evaporation experiments are particularly popular because they provide data for both SHP functions. The evaluation by the simplified evaporation method (SEM) method, originally proposed by Schindler and subsequently improved by several authors, relies on linearization assumptions that allow for a relatively simple calculation scheme but result in biased conductivity data for some soils. The objective of this study is to propose and test an improved computational scheme for the hydraulic conductivity function. We present the new theory and show that it leads generally to higher accuracy of the conductivity function. The improvement is most pronounced for sandy soils and soil water pressure heads below −100 cm, where the original method provided data with bias.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.