差异隐私将如何影响对美国空气污染暴露和差异的估计

Madalsa Singh
{"title":"差异隐私将如何影响对美国空气污染暴露和差异的估计","authors":"Madalsa Singh","doi":"10.32866/001c.74975","DOIUrl":null,"url":null,"abstract":"Census data is crucial to understand energy and environmental justice outcomes such as poor air quality which disproportionately impact people of color in the U.S. Wwith the advent of sophisticated personal datasets and analysis, Census Bureau is considering adding top-down noise (differential privacy) and post-processing 2020 census data to reduce the risk of identification of individual respondents. Using 2010 demonstration census and pollution data, I find that compared to the original census, differentially private (DP) census significantly changes ambient pollution exposure in areas with sparse populations. White Americans have lowest variability, followed by Latinos, Asian, and Black Americans. DP underestimates pollution disparities for SO2 and PM2.5 while overestimates the pollution disparities for PM10.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Differential Privacy Will Affect Estimates of Air Pollution Exposure and Disparities in the United States\",\"authors\":\"Madalsa Singh\",\"doi\":\"10.32866/001c.74975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Census data is crucial to understand energy and environmental justice outcomes such as poor air quality which disproportionately impact people of color in the U.S. Wwith the advent of sophisticated personal datasets and analysis, Census Bureau is considering adding top-down noise (differential privacy) and post-processing 2020 census data to reduce the risk of identification of individual respondents. Using 2010 demonstration census and pollution data, I find that compared to the original census, differentially private (DP) census significantly changes ambient pollution exposure in areas with sparse populations. White Americans have lowest variability, followed by Latinos, Asian, and Black Americans. DP underestimates pollution disparities for SO2 and PM2.5 while overestimates the pollution disparities for PM10.\",\"PeriodicalId\":73025,\"journal\":{\"name\":\"Findings (Sydney (N.S.W.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Findings (Sydney (N.S.W.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32866/001c.74975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32866/001c.74975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人口普查数据对于理解能源和环境正义的结果至关重要,例如空气质量差,这对美国有色人种的影响尤为严重。随着复杂的个人数据集和分析的出现,人口普查局正在考虑增加自上而下的噪音(差异隐私),并对2020年人口普查数据进行后处理,以降低识别个人受访者的风险。使用2010年的示范人口普查和污染数据,我发现与最初的人口普查相比,差异私人(DP)人口普查显著改变了人口稀少地区的环境污染暴露。美国白人的变异性最低,其次是拉丁裔、亚裔和黑人。DP低估了SO2和PM2.5的污染差异,而高估了PM10的污染差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Differential Privacy Will Affect Estimates of Air Pollution Exposure and Disparities in the United States
Census data is crucial to understand energy and environmental justice outcomes such as poor air quality which disproportionately impact people of color in the U.S. Wwith the advent of sophisticated personal datasets and analysis, Census Bureau is considering adding top-down noise (differential privacy) and post-processing 2020 census data to reduce the risk of identification of individual respondents. Using 2010 demonstration census and pollution data, I find that compared to the original census, differentially private (DP) census significantly changes ambient pollution exposure in areas with sparse populations. White Americans have lowest variability, followed by Latinos, Asian, and Black Americans. DP underestimates pollution disparities for SO2 and PM2.5 while overestimates the pollution disparities for PM10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信