Chuanyun Xu, Yueping Zheng, Yang Zhang, Gang Li, Ying Wang
{"title":"一种在密集场景中检测物体的方法","authors":"Chuanyun Xu, Yueping Zheng, Yang Zhang, Gang Li, Ying Wang","doi":"10.1515/comp-2022-0231","DOIUrl":null,"url":null,"abstract":"Abstract Recent object detectors have achieved excellent performance in accuracy and speed. Even with such impressive results, the most advanced detectors are challenging in dense scenes. In this article, we analyze and find the reasons for the decrease in detection accuracy in dense scenes. We started our work in terms of region proposal and location loss. We found that low-quality proposal regions during the training process are the main factors affecting detection accuracy. To prove our research, we established and trained a dense detection model based on Cascade R-CNN. The model achieves an accuracy of mAP 0.413 on the SKU-110K sub-dataset. Our results show that improving the quality of recommended regions can effectively improve the detection accuracy in dense scenes.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":"12 1","pages":"75 - 82"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A method for detecting objects in dense scenes\",\"authors\":\"Chuanyun Xu, Yueping Zheng, Yang Zhang, Gang Li, Ying Wang\",\"doi\":\"10.1515/comp-2022-0231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent object detectors have achieved excellent performance in accuracy and speed. Even with such impressive results, the most advanced detectors are challenging in dense scenes. In this article, we analyze and find the reasons for the decrease in detection accuracy in dense scenes. We started our work in terms of region proposal and location loss. We found that low-quality proposal regions during the training process are the main factors affecting detection accuracy. To prove our research, we established and trained a dense detection model based on Cascade R-CNN. The model achieves an accuracy of mAP 0.413 on the SKU-110K sub-dataset. Our results show that improving the quality of recommended regions can effectively improve the detection accuracy in dense scenes.\",\"PeriodicalId\":43014,\"journal\":{\"name\":\"Open Computer Science\",\"volume\":\"12 1\",\"pages\":\"75 - 82\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2022-0231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract Recent object detectors have achieved excellent performance in accuracy and speed. Even with such impressive results, the most advanced detectors are challenging in dense scenes. In this article, we analyze and find the reasons for the decrease in detection accuracy in dense scenes. We started our work in terms of region proposal and location loss. We found that low-quality proposal regions during the training process are the main factors affecting detection accuracy. To prove our research, we established and trained a dense detection model based on Cascade R-CNN. The model achieves an accuracy of mAP 0.413 on the SKU-110K sub-dataset. Our results show that improving the quality of recommended regions can effectively improve the detection accuracy in dense scenes.