{"title":"扭弯相:结构-性质关系、手性和氢键","authors":"R. Walker","doi":"10.1080/1358314X.2020.1771841","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article will review some of our recent work concerning the relationships between molecular structure and the observation of the fascinating twist-bend nematic, NTB, phase. From a chemist’s perspective, understanding the molecular features influencing the formation and stabilisation of the NTB phase is of paramount importance, and allows for the design of new materials that have targeted properties. As such, recent work in Aberdeen has had the primary aim of enhancing our current understanding of these relationships in dimeric liquid crystals, through the synthesis and characterisation of a diverse range of materials, including a selection of supramolecular liquid crystals. A second aim has been to explore the intriguing question as to how the NTB phase, having spontaneous structural chirality, would respond at a microscopic level to the presence of intrinsic molecular chirality – the inclusion of chiral fragments in the dimers – and to obtain examples of the ‘chiral’ twist-bend nematic phase (N*TB) for comparative study alongside the conventional NTB phase. We also show that bent achiral molecules form heliconical smectic phases, as predicted by Dozov in his seminal 2001 work.","PeriodicalId":18110,"journal":{"name":"Liquid Crystals Today","volume":"29 1","pages":"14 - 2"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1358314X.2020.1771841","citationCount":"8","resultStr":"{\"title\":\"The twist-bend phases: structure–property relationships, chirality and hydrogen-bonding\",\"authors\":\"R. Walker\",\"doi\":\"10.1080/1358314X.2020.1771841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This article will review some of our recent work concerning the relationships between molecular structure and the observation of the fascinating twist-bend nematic, NTB, phase. From a chemist’s perspective, understanding the molecular features influencing the formation and stabilisation of the NTB phase is of paramount importance, and allows for the design of new materials that have targeted properties. As such, recent work in Aberdeen has had the primary aim of enhancing our current understanding of these relationships in dimeric liquid crystals, through the synthesis and characterisation of a diverse range of materials, including a selection of supramolecular liquid crystals. A second aim has been to explore the intriguing question as to how the NTB phase, having spontaneous structural chirality, would respond at a microscopic level to the presence of intrinsic molecular chirality – the inclusion of chiral fragments in the dimers – and to obtain examples of the ‘chiral’ twist-bend nematic phase (N*TB) for comparative study alongside the conventional NTB phase. We also show that bent achiral molecules form heliconical smectic phases, as predicted by Dozov in his seminal 2001 work.\",\"PeriodicalId\":18110,\"journal\":{\"name\":\"Liquid Crystals Today\",\"volume\":\"29 1\",\"pages\":\"14 - 2\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1358314X.2020.1771841\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Liquid Crystals Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1358314X.2020.1771841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1358314X.2020.1771841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
The twist-bend phases: structure–property relationships, chirality and hydrogen-bonding
ABSTRACT This article will review some of our recent work concerning the relationships between molecular structure and the observation of the fascinating twist-bend nematic, NTB, phase. From a chemist’s perspective, understanding the molecular features influencing the formation and stabilisation of the NTB phase is of paramount importance, and allows for the design of new materials that have targeted properties. As such, recent work in Aberdeen has had the primary aim of enhancing our current understanding of these relationships in dimeric liquid crystals, through the synthesis and characterisation of a diverse range of materials, including a selection of supramolecular liquid crystals. A second aim has been to explore the intriguing question as to how the NTB phase, having spontaneous structural chirality, would respond at a microscopic level to the presence of intrinsic molecular chirality – the inclusion of chiral fragments in the dimers – and to obtain examples of the ‘chiral’ twist-bend nematic phase (N*TB) for comparative study alongside the conventional NTB phase. We also show that bent achiral molecules form heliconical smectic phases, as predicted by Dozov in his seminal 2001 work.