Dorra Ben Abdeljelil, S. Chatti, Raja O Ahmed Ben Ali
{"title":"应变速率和载荷方向对各向异性聚氨酯泡沫循环响应的影响","authors":"Dorra Ben Abdeljelil, S. Chatti, Raja O Ahmed Ben Ali","doi":"10.1177/02624893221084895","DOIUrl":null,"url":null,"abstract":"Anisotropic cellular materials, such as polymeric foams, play an important role in structures subjected to cyclic loadings. The present paper provides an experimental investigation of the mechanical behavior of an anisotropic polyurethane foam subjected to cyclic compressive loadings under two perpendicular orientations: the rising and perpendicular directions. The foam samples are loaded under three different strain rates and various deformations. The experimental results are presented in terms of elasticity modulus, maximal compressive stress, effective energy absorption capacity, and residual strain. It is proved that the investigated polyurethane foam presents a macroscopic mechanical anisotropy caused by microscopic cell elongation in the foaming direction. Moreover, it is demonstrated that the mechanical behavior of the foam is fully influenced by both deformation rates and imposed strains. The experimental stress–strain curves are modelized using an empirical model considering an adjustable modulus of elasticity. The analytical results show a good agreement with the experiments.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"41 1","pages":"147 - 162"},"PeriodicalIF":1.3000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of strain rate and load orientation on cyclic response of anisotropic polyurethane foam\",\"authors\":\"Dorra Ben Abdeljelil, S. Chatti, Raja O Ahmed Ben Ali\",\"doi\":\"10.1177/02624893221084895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anisotropic cellular materials, such as polymeric foams, play an important role in structures subjected to cyclic loadings. The present paper provides an experimental investigation of the mechanical behavior of an anisotropic polyurethane foam subjected to cyclic compressive loadings under two perpendicular orientations: the rising and perpendicular directions. The foam samples are loaded under three different strain rates and various deformations. The experimental results are presented in terms of elasticity modulus, maximal compressive stress, effective energy absorption capacity, and residual strain. It is proved that the investigated polyurethane foam presents a macroscopic mechanical anisotropy caused by microscopic cell elongation in the foaming direction. Moreover, it is demonstrated that the mechanical behavior of the foam is fully influenced by both deformation rates and imposed strains. The experimental stress–strain curves are modelized using an empirical model considering an adjustable modulus of elasticity. The analytical results show a good agreement with the experiments.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":\"41 1\",\"pages\":\"147 - 162\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893221084895\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893221084895","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effect of strain rate and load orientation on cyclic response of anisotropic polyurethane foam
Anisotropic cellular materials, such as polymeric foams, play an important role in structures subjected to cyclic loadings. The present paper provides an experimental investigation of the mechanical behavior of an anisotropic polyurethane foam subjected to cyclic compressive loadings under two perpendicular orientations: the rising and perpendicular directions. The foam samples are loaded under three different strain rates and various deformations. The experimental results are presented in terms of elasticity modulus, maximal compressive stress, effective energy absorption capacity, and residual strain. It is proved that the investigated polyurethane foam presents a macroscopic mechanical anisotropy caused by microscopic cell elongation in the foaming direction. Moreover, it is demonstrated that the mechanical behavior of the foam is fully influenced by both deformation rates and imposed strains. The experimental stress–strain curves are modelized using an empirical model considering an adjustable modulus of elasticity. The analytical results show a good agreement with the experiments.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.