{"title":"贝叶斯非参数因果推理的方法和原因","authors":"A. Linero, Joseph Antonelli","doi":"10.1002/wics.1583","DOIUrl":null,"url":null,"abstract":"Spurred on by recent successes in causal inference competitions, Bayesian nonparametric (and high‐dimensional) methods have recently seen increased attention in the causal inference literature. In this article, we present a comprehensive overview of Bayesian nonparametric applications to causal inference. Our aims are to (i) introduce the fundamental Bayesian nonparametric toolkit; (ii) discuss how to determine which tool is most appropriate for a given problem; and (iii) show how to avoid common pitfalls in applying Bayesian nonparametric methods in high‐dimensional settings. Unlike standard fixed‐dimensional parametric problems, where outcome modeling alone can sometimes be effective, we argue that most of the time it is necessary to model both the selection and outcome processes.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The how and why of Bayesian nonparametric causal inference\",\"authors\":\"A. Linero, Joseph Antonelli\",\"doi\":\"10.1002/wics.1583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spurred on by recent successes in causal inference competitions, Bayesian nonparametric (and high‐dimensional) methods have recently seen increased attention in the causal inference literature. In this article, we present a comprehensive overview of Bayesian nonparametric applications to causal inference. Our aims are to (i) introduce the fundamental Bayesian nonparametric toolkit; (ii) discuss how to determine which tool is most appropriate for a given problem; and (iii) show how to avoid common pitfalls in applying Bayesian nonparametric methods in high‐dimensional settings. Unlike standard fixed‐dimensional parametric problems, where outcome modeling alone can sometimes be effective, we argue that most of the time it is necessary to model both the selection and outcome processes.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1583\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1583","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The how and why of Bayesian nonparametric causal inference
Spurred on by recent successes in causal inference competitions, Bayesian nonparametric (and high‐dimensional) methods have recently seen increased attention in the causal inference literature. In this article, we present a comprehensive overview of Bayesian nonparametric applications to causal inference. Our aims are to (i) introduce the fundamental Bayesian nonparametric toolkit; (ii) discuss how to determine which tool is most appropriate for a given problem; and (iii) show how to avoid common pitfalls in applying Bayesian nonparametric methods in high‐dimensional settings. Unlike standard fixed‐dimensional parametric problems, where outcome modeling alone can sometimes be effective, we argue that most of the time it is necessary to model both the selection and outcome processes.