论O 'Hara结能I:临界结的规律性

IF 1.3 1区 数学 Q1 MATHEMATICS
S. Blatt, P. Reiter, A. Schikorra
{"title":"论O 'Hara结能I:临界结的规律性","authors":"S. Blatt, P. Reiter, A. Schikorra","doi":"10.4310/jdg/1664378616","DOIUrl":null,"url":null,"abstract":"We develop a regularity theory for extremal knots of scale invariant knot energies defined by J. O'hara in 1991. This class contains as a special case the Mobius energy. \nFor the Mobius energy, due to the celebrated work of Freedman, He, and Wang, we have a relatively good understanding. Their approch is crucially based on the invariance of the Mobius energy under Mobius transforms, which fails for all the other O'hara energies. \nWe overcome this difficulty by re-interpreting the scale invariant O'hara knot energies as a nonlinear, nonlocal $L^p$-energy acting on the unit tangent of the knot parametrization. This allows us to draw a connection to the theory of (fractional) harmonic maps into spheres. Using this connection we are able to adapt the regularity theory for degenerate fractional harmonic maps in the critical dimension to prove regularity for minimizers and critical knots of the scale-invariant O'hara knot energies.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On O’Hara knot energies I: Regularity for critical knots\",\"authors\":\"S. Blatt, P. Reiter, A. Schikorra\",\"doi\":\"10.4310/jdg/1664378616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a regularity theory for extremal knots of scale invariant knot energies defined by J. O'hara in 1991. This class contains as a special case the Mobius energy. \\nFor the Mobius energy, due to the celebrated work of Freedman, He, and Wang, we have a relatively good understanding. Their approch is crucially based on the invariance of the Mobius energy under Mobius transforms, which fails for all the other O'hara energies. \\nWe overcome this difficulty by re-interpreting the scale invariant O'hara knot energies as a nonlinear, nonlocal $L^p$-energy acting on the unit tangent of the knot parametrization. This allows us to draw a connection to the theory of (fractional) harmonic maps into spheres. Using this connection we are able to adapt the regularity theory for degenerate fractional harmonic maps in the critical dimension to prove regularity for minimizers and critical knots of the scale-invariant O'hara knot energies.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1664378616\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1664378616","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们发展了J. O'hara(1991)定义的尺度不变结能量的极限结的正则性理论。这个类包含了一个特殊的莫比乌斯能量。对于莫比乌斯能量,由于Freedman, He和Wang的著名工作,我们有一个比较好的理解。他们的方法关键是基于莫比乌斯变换下莫比乌斯能量的不变性,这对于所有其他的奥哈拉能量来说都是失败的。我们通过将尺度不变的O'hara结能量重新解释为作用于结参数化的单位切线上的非线性、非局部的L^p -能量来克服这一困难。这使我们能够与球的(分数)调和映射理论建立联系。利用这一联系,我们能够将临界维上退化分数阶调和映射的正则性理论应用于证明标度不变O'hara结能量的极小值和临界结的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On O’Hara knot energies I: Regularity for critical knots
We develop a regularity theory for extremal knots of scale invariant knot energies defined by J. O'hara in 1991. This class contains as a special case the Mobius energy. For the Mobius energy, due to the celebrated work of Freedman, He, and Wang, we have a relatively good understanding. Their approch is crucially based on the invariance of the Mobius energy under Mobius transforms, which fails for all the other O'hara energies. We overcome this difficulty by re-interpreting the scale invariant O'hara knot energies as a nonlinear, nonlocal $L^p$-energy acting on the unit tangent of the knot parametrization. This allows us to draw a connection to the theory of (fractional) harmonic maps into spheres. Using this connection we are able to adapt the regularity theory for degenerate fractional harmonic maps in the critical dimension to prove regularity for minimizers and critical knots of the scale-invariant O'hara knot energies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信