新分离的Citrobacter sp.菌株EBT-2对偶氮染料的脱色及各参数对脱色的影响

Q3 Agricultural and Biological Sciences
I. Thapa, S. Gaur
{"title":"新分离的Citrobacter sp.菌株EBT-2对偶氮染料的脱色及各参数对脱色的影响","authors":"I. Thapa, S. Gaur","doi":"10.7324/jabb.2021.96011","DOIUrl":null,"url":null,"abstract":"Azo dyes constitute around 70% of the total dyes in the world. Almost 10%–15% of dye is released in wastewater during manufacture of the dye and its application, and is a prime source of pollution. Various physiochemical methods available for their decolorization have some or the other disadvantages like cost or time inefficiency. Hence, bacterial decolorization has been studied for cheap and efficient decolorization. In this study, Citrobacter sp. strain EBT-2 was isolated from a textile industry dumping site and used to optimize dye decolorization conditions for three Azodyes: methyl orange (MO), congo red (CR), and Eriochrome Black T (EBT). Decolorization was measured by UV–Vis spectroscopy analysis. The strain showed 100% decolorization for all the three dyes up to 100 mg/l concentration in 96–120 hours. It was able to decolorize till 300, 500, and 500 mg/l of dye concentration for MO, CR, and EBT, respectively. Decolorization efficiency was independent of initial dye concentration. Optimum pH for decolorization was 7, 7, and 9 for MO, CR, and EBT, respectively. The effect of agitation on decolorization was studied under static and agitated (200 rpm) condition. About 90% decolorization was observed at static condition and about 20% decolorization was observed under agitated condition in all the three dyes in 96 hours. Complete decolorization was obtained for MO and EBT at 35°C and 45°C, respectively. CR showed complete decolorization only at 35°C. The results conclude that Citrobacter sp. can be used for the successful dye decolorization of Azo dyes, primarily MO, CR, and EBT under optimum physiochemical conditions.","PeriodicalId":15032,"journal":{"name":"Journal of Applied Biology and Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decolorization of azo dyes by newly isolated Citrobacter sp. strain EBT-2 and effect of various parameters on decolourization\",\"authors\":\"I. Thapa, S. Gaur\",\"doi\":\"10.7324/jabb.2021.96011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Azo dyes constitute around 70% of the total dyes in the world. Almost 10%–15% of dye is released in wastewater during manufacture of the dye and its application, and is a prime source of pollution. Various physiochemical methods available for their decolorization have some or the other disadvantages like cost or time inefficiency. Hence, bacterial decolorization has been studied for cheap and efficient decolorization. In this study, Citrobacter sp. strain EBT-2 was isolated from a textile industry dumping site and used to optimize dye decolorization conditions for three Azodyes: methyl orange (MO), congo red (CR), and Eriochrome Black T (EBT). Decolorization was measured by UV–Vis spectroscopy analysis. The strain showed 100% decolorization for all the three dyes up to 100 mg/l concentration in 96–120 hours. It was able to decolorize till 300, 500, and 500 mg/l of dye concentration for MO, CR, and EBT, respectively. Decolorization efficiency was independent of initial dye concentration. Optimum pH for decolorization was 7, 7, and 9 for MO, CR, and EBT, respectively. The effect of agitation on decolorization was studied under static and agitated (200 rpm) condition. About 90% decolorization was observed at static condition and about 20% decolorization was observed under agitated condition in all the three dyes in 96 hours. Complete decolorization was obtained for MO and EBT at 35°C and 45°C, respectively. CR showed complete decolorization only at 35°C. The results conclude that Citrobacter sp. can be used for the successful dye decolorization of Azo dyes, primarily MO, CR, and EBT under optimum physiochemical conditions.\",\"PeriodicalId\":15032,\"journal\":{\"name\":\"Journal of Applied Biology and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7324/jabb.2021.96011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2021.96011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

偶氮染料约占世界染料总量的70%。在染料的生产和应用过程中,大约有10%-15%的染料排放到废水中,是主要的污染源。现有的各种物理化学脱色方法都存在成本低、时间短等缺点。因此,对细菌脱色进行了廉价、高效的脱色研究。本研究从某纺织工业倾倒场地分离得到柠檬酸杆菌(Citrobacter sp.) EBT-2菌株,并对甲基橙(MO)、刚果红(CR)和铬黑T (EBT) 3种偶氮染料进行了脱色条件优化。采用紫外-可见光谱法测定脱色效果。菌株对浓度为100 mg/l的三种染料在96 ~ 120小时内均脱色100%。对MO、CR和EBT的脱色效果分别为300mg /l、500mg /l和500mg /l。脱色效率与初始染料浓度无关。MO、CR和EBT的最佳脱色pH分别为7、7和9。在静态和搅拌(200转/分)条件下研究了搅拌对脱色的影响。三种染料在静态条件下的脱色率约为90%,在搅拌条件下的脱色率约为20%。MO和EBT分别在35°C和45°C下完全脱色。CR仅在35℃时表现出完全脱色。结果表明,在最佳的物理化学条件下,柠檬酸杆菌可以成功地对偶氮染料(主要是MO、CR和EBT)进行脱色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decolorization of azo dyes by newly isolated Citrobacter sp. strain EBT-2 and effect of various parameters on decolourization
Azo dyes constitute around 70% of the total dyes in the world. Almost 10%–15% of dye is released in wastewater during manufacture of the dye and its application, and is a prime source of pollution. Various physiochemical methods available for their decolorization have some or the other disadvantages like cost or time inefficiency. Hence, bacterial decolorization has been studied for cheap and efficient decolorization. In this study, Citrobacter sp. strain EBT-2 was isolated from a textile industry dumping site and used to optimize dye decolorization conditions for three Azodyes: methyl orange (MO), congo red (CR), and Eriochrome Black T (EBT). Decolorization was measured by UV–Vis spectroscopy analysis. The strain showed 100% decolorization for all the three dyes up to 100 mg/l concentration in 96–120 hours. It was able to decolorize till 300, 500, and 500 mg/l of dye concentration for MO, CR, and EBT, respectively. Decolorization efficiency was independent of initial dye concentration. Optimum pH for decolorization was 7, 7, and 9 for MO, CR, and EBT, respectively. The effect of agitation on decolorization was studied under static and agitated (200 rpm) condition. About 90% decolorization was observed at static condition and about 20% decolorization was observed under agitated condition in all the three dyes in 96 hours. Complete decolorization was obtained for MO and EBT at 35°C and 45°C, respectively. CR showed complete decolorization only at 35°C. The results conclude that Citrobacter sp. can be used for the successful dye decolorization of Azo dyes, primarily MO, CR, and EBT under optimum physiochemical conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biology and Biotechnology
Journal of Applied Biology and Biotechnology Agricultural and Biological Sciences-Food Science
CiteScore
1.80
自引率
0.00%
发文量
181
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信