由三个子系统组成的复杂系统的概率评估、多故障威胁和联结修复方法

IF 2.7 Q2 MANAGEMENT
A. Jibril, V. V. Singh, D. K. Rawal
{"title":"由三个子系统组成的复杂系统的概率评估、多故障威胁和联结修复方法","authors":"A. Jibril, V. V. Singh, D. K. Rawal","doi":"10.1108/ijqrm-03-2021-0061","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to deliberate the system reliability of a system in combination of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance.Design/methodology/approachProbabilistic assessment of complex system consisting three subsystems, multi-failure threats and copula repair approach is used in this study. Abbas Jubrin Bin, V.V. Singh, D.K. Rawal, in this research paper, have analyzed a system consisting of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance.FindingsIn this analysis, four different cases of availability are analysed for Gumbel–Hougaard family copula and also four cases for general repair with similar failure rates are studied. The authors found that when failure rates increase, the system availability decreases, and when the system follows copula repair distribution, the system availability is better than general repair.Research limitations/implicationsThis research may be implemented in various industrial systems where the subsystems are configured under k-out-of-n: G working policy. It is also advisable that copula repair is highly recommended for best performances from the system. On the basis of mean time to system failure (MTSF) computations, the failure rate which affects system failure more needs to be controlled by monitoring, servicing and replacing stratagem.Practical implicationsThis research work has great implications in various industrial systems like power plant systems, nuclear power plant, electricity distributions system, etc. where the k-out-of-n-type of system operation scheme is validated for system operations with the multi-repair.Originality/valueThis work is a new work by authors. In the previously available technical analysis of the system, the researchers have analyzed the repairable system either supplementary variable approach, supplementary variable and system which have two subsystems in a series configuration. This research work analyzed a system with three subsystems with a multi-repair approach and supplementary variables.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Probabilistic assessment of complex system consisting three subsystems, multi-failure threats and copula repair approach\",\"authors\":\"A. Jibril, V. V. Singh, D. K. Rawal\",\"doi\":\"10.1108/ijqrm-03-2021-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this paper is to deliberate the system reliability of a system in combination of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance.Design/methodology/approachProbabilistic assessment of complex system consisting three subsystems, multi-failure threats and copula repair approach is used in this study. Abbas Jubrin Bin, V.V. Singh, D.K. Rawal, in this research paper, have analyzed a system consisting of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance.FindingsIn this analysis, four different cases of availability are analysed for Gumbel–Hougaard family copula and also four cases for general repair with similar failure rates are studied. The authors found that when failure rates increase, the system availability decreases, and when the system follows copula repair distribution, the system availability is better than general repair.Research limitations/implicationsThis research may be implemented in various industrial systems where the subsystems are configured under k-out-of-n: G working policy. It is also advisable that copula repair is highly recommended for best performances from the system. On the basis of mean time to system failure (MTSF) computations, the failure rate which affects system failure more needs to be controlled by monitoring, servicing and replacing stratagem.Practical implicationsThis research work has great implications in various industrial systems like power plant systems, nuclear power plant, electricity distributions system, etc. where the k-out-of-n-type of system operation scheme is validated for system operations with the multi-repair.Originality/valueThis work is a new work by authors. In the previously available technical analysis of the system, the researchers have analyzed the repairable system either supplementary variable approach, supplementary variable and system which have two subsystems in a series configuration. This research work analyzed a system with three subsystems with a multi-repair approach and supplementary variables.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-03-2021-0061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-03-2021-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2

摘要

目的本文的目的是研究串联配置中三个子系统组合的系统的系统可靠性,其中三个子系统都在n:G中的k运算方案下运行。基于计算结果,证明了copula修复比一般修复更能提高系统性能。采用具有copula分布含义的补充变量方法来评估系统性能。设计/方法论/方法本研究采用了由三个子系统组成的复杂系统的概率评估、多故障威胁和copula修复方法。Abbas Jubrin Bin、V.V.Singh、D.K.Rawal在这篇研究论文中分析了一个由串联配置的三个子系统组成的系统,其中所有三个子系统都在n:G中的K运算方案下运行。采用具有copula分布含义的补充变量方法来评估系统性能。基于计算结果,证明了copula修复比一般修复更能提高系统性能。结果在本分析中,分析了Gumbel–Hougaard家族copula的四种不同可用性情况,并研究了四种故障率相似的普通修复情况。作者发现,当故障率增加时,系统可用性降低,当系统遵循copula修复分布时,系统有效性优于一般修复。研究局限性/含义这项研究可以在各种工业系统中实施,其中子系统是在n:G工作策略下配置的。还建议强烈建议对copula进行修复,以获得系统的最佳性能。在平均系统故障时间(MTSF)计算的基础上,需要通过监测、维修和更换策略来控制对系统故障影响更大的故障率。实际意义这项研究工作对发电厂系统、核电站、配电系统等各种工业系统都有很大的意义。其中,n型系统中的k型运行方案被验证用于多修复的系统运行。独创性/价值这项工作是作者的新工作。在现有的系统技术分析中,研究人员对可修系统进行了补充变量法、补充变量法和具有两个子系统串联配置的系统分析。本研究采用多修复方法和补充变量分析了一个具有三个子系统的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic assessment of complex system consisting three subsystems, multi-failure threats and copula repair approach
PurposeThe purpose of this paper is to deliberate the system reliability of a system in combination of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance.Design/methodology/approachProbabilistic assessment of complex system consisting three subsystems, multi-failure threats and copula repair approach is used in this study. Abbas Jubrin Bin, V.V. Singh, D.K. Rawal, in this research paper, have analyzed a system consisting of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance.FindingsIn this analysis, four different cases of availability are analysed for Gumbel–Hougaard family copula and also four cases for general repair with similar failure rates are studied. The authors found that when failure rates increase, the system availability decreases, and when the system follows copula repair distribution, the system availability is better than general repair.Research limitations/implicationsThis research may be implemented in various industrial systems where the subsystems are configured under k-out-of-n: G working policy. It is also advisable that copula repair is highly recommended for best performances from the system. On the basis of mean time to system failure (MTSF) computations, the failure rate which affects system failure more needs to be controlled by monitoring, servicing and replacing stratagem.Practical implicationsThis research work has great implications in various industrial systems like power plant systems, nuclear power plant, electricity distributions system, etc. where the k-out-of-n-type of system operation scheme is validated for system operations with the multi-repair.Originality/valueThis work is a new work by authors. In the previously available technical analysis of the system, the researchers have analyzed the repairable system either supplementary variable approach, supplementary variable and system which have two subsystems in a series configuration. This research work analyzed a system with three subsystems with a multi-repair approach and supplementary variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
12.00%
发文量
53
期刊介绍: In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信