支持向量机的BI目标模型及其交互过程识别最佳折衷方案

Mohammed Zakaria Moustafa, Mohammed Rizk Mohammed, H. Khater, Hager Ali Yahia
{"title":"支持向量机的BI目标模型及其交互过程识别最佳折衷方案","authors":"Mohammed Zakaria Moustafa, Mohammed Rizk Mohammed, H. Khater, Hager Ali Yahia","doi":"10.5121/ijaia.2020.11204","DOIUrl":null,"url":null,"abstract":"A support vector machine (SVM) learns the decision surface from two different classes of the input points, there are misclassifications in some of the input points in several applications. In this paper a bi-objective quadratic programming model is utilized and different feature quality measures are optimized simultaneously using the weighting method for solving our bi-objective quadratic programming problem. An important contribution will be added for the proposed bi-objective quadratic programming model by getting different efficient support vectors due to changing the weighting values. The numerical examples, give evidence of the effectiveness of the weighting parameters on reducing the misclassification between two classes of the input points. An interactive procedure will be added to identify the best compromise solution from the generated efficient solutions.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"11 1","pages":"47"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A BI-objective Model for SVM With an Interactive Procedure to Identify the Best Compromise Solution\",\"authors\":\"Mohammed Zakaria Moustafa, Mohammed Rizk Mohammed, H. Khater, Hager Ali Yahia\",\"doi\":\"10.5121/ijaia.2020.11204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A support vector machine (SVM) learns the decision surface from two different classes of the input points, there are misclassifications in some of the input points in several applications. In this paper a bi-objective quadratic programming model is utilized and different feature quality measures are optimized simultaneously using the weighting method for solving our bi-objective quadratic programming problem. An important contribution will be added for the proposed bi-objective quadratic programming model by getting different efficient support vectors due to changing the weighting values. The numerical examples, give evidence of the effectiveness of the weighting parameters on reducing the misclassification between two classes of the input points. An interactive procedure will be added to identify the best compromise solution from the generated efficient solutions.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\"11 1\",\"pages\":\"47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijaia.2020.11204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2020.11204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

支持向量机(SVM)从两类不同的输入点学习决策面,在一些应用中,一些输入点存在错误分类。本文使用双目标二次规划模型,并使用加权方法同时优化不同的特征质量度量,以解决我们的双目标二次元规划问题。由于权重值的变化,得到了不同的有效支持向量,这将为所提出的双目标二次规划模型增加一个重要贡献。数值例子证明了加权参数在减少两类输入点之间的错误分类方面的有效性。将增加一个互动程序,从生成的有效解决方案中确定最佳折衷解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A BI-objective Model for SVM With an Interactive Procedure to Identify the Best Compromise Solution
A support vector machine (SVM) learns the decision surface from two different classes of the input points, there are misclassifications in some of the input points in several applications. In this paper a bi-objective quadratic programming model is utilized and different feature quality measures are optimized simultaneously using the weighting method for solving our bi-objective quadratic programming problem. An important contribution will be added for the proposed bi-objective quadratic programming model by getting different efficient support vectors due to changing the weighting values. The numerical examples, give evidence of the effectiveness of the weighting parameters on reducing the misclassification between two classes of the input points. An interactive procedure will be added to identify the best compromise solution from the generated efficient solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信