控制形式下的形状优化问题

IF 0.6 4区 数学 Q3 MATHEMATICS
G. Buttazzo, Francesco Paolo Maiale, B. Velichkov
{"title":"控制形式下的形状优化问题","authors":"G. Buttazzo, Francesco Paolo Maiale, B. Velichkov","doi":"10.4171/rlm/942","DOIUrl":null,"url":null,"abstract":"We consider a shape optimization problem written in the optimal control form: the governing operator is the p-Laplacian in the Euclidean space R, the cost is of an integral type, and the control variable is the domain of the state equation. Conditions that guarantee the existence of an optimal domain will be discussed in various situations. It is proved that the optimal domains have a finite perimeter and, under some suitable assumptions, that they are open sets. A crucial difference is between the case p > d, where the existence occurs under very mild conditions, and the case p ≤ d, where additional assumptions have to be made on the data.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Shape optimization problems in control form\",\"authors\":\"G. Buttazzo, Francesco Paolo Maiale, B. Velichkov\",\"doi\":\"10.4171/rlm/942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a shape optimization problem written in the optimal control form: the governing operator is the p-Laplacian in the Euclidean space R, the cost is of an integral type, and the control variable is the domain of the state equation. Conditions that guarantee the existence of an optimal domain will be discussed in various situations. It is proved that the optimal domains have a finite perimeter and, under some suitable assumptions, that they are open sets. A crucial difference is between the case p > d, where the existence occurs under very mild conditions, and the case p ≤ d, where additional assumptions have to be made on the data.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/942\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/942","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

考虑一个以最优控制形式表示的形状优化问题:控制算子为欧几里德空间R中的p-拉普拉斯算子,代价为积分型,控制变量为状态方程的定域。保证最优域存在的条件将在各种情况下进行讨论。证明了最优域的周长是有限的,并且在适当的假设下,它们是开集。一个关键的区别在于p > d的情况,即在非常温和的条件下存在,而p≤d的情况,则必须对数据做出额外的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape optimization problems in control form
We consider a shape optimization problem written in the optimal control form: the governing operator is the p-Laplacian in the Euclidean space R, the cost is of an integral type, and the control variable is the domain of the state equation. Conditions that guarantee the existence of an optimal domain will be discussed in various situations. It is proved that the optimal domains have a finite perimeter and, under some suitable assumptions, that they are open sets. A crucial difference is between the case p > d, where the existence occurs under very mild conditions, and the case p ≤ d, where additional assumptions have to be made on the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信