子图网络随机效应误差分量模型的规范与测试

Q3 Mathematics
Gabriel Montes-Rojas
{"title":"子图网络随机效应误差分量模型的规范与测试","authors":"Gabriel Montes-Rojas","doi":"10.1515/jem-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract This paper develops a subgraph random effects error components model for network data linear regression where the unit of observation is the node. In particular, it allows for link and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the coefficients’ variance-covariance matrix. It also proposes consistent estimators of the variance components using quadratic forms and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show that the tests have good performance in finite samples. It applies the proposed tests to the Call interbank market in Argentina.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"11 1","pages":"17 - 34"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subgraph Network Random Effects Error Components Models: Specification and Testing\",\"authors\":\"Gabriel Montes-Rojas\",\"doi\":\"10.1515/jem-2021-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper develops a subgraph random effects error components model for network data linear regression where the unit of observation is the node. In particular, it allows for link and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the coefficients’ variance-covariance matrix. It also proposes consistent estimators of the variance components using quadratic forms and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show that the tests have good performance in finite samples. It applies the proposed tests to the Call interbank market in Argentina.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"11 1\",\"pages\":\"17 - 34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2021-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文建立了以观测单位为节点的网络数据线性回归的子图随机效应误差分量模型。特别是,它允许链接和三角形特定的组件,作为建模网络效果的基础模型。然后,它评估了在估计系数的方差-协方差矩阵时忽略网络效应的潜在影响。它还提出了使用二次型和拉格朗日乘子检验来评估网络中随机分量的适当模型的方差分量的一致估计量。蒙特卡罗模拟表明,该测试在有限样本中具有良好的性能。它将拟议的测试应用于阿根廷的Call银行间市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subgraph Network Random Effects Error Components Models: Specification and Testing
Abstract This paper develops a subgraph random effects error components model for network data linear regression where the unit of observation is the node. In particular, it allows for link and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the coefficients’ variance-covariance matrix. It also proposes consistent estimators of the variance components using quadratic forms and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show that the tests have good performance in finite samples. It applies the proposed tests to the Call interbank market in Argentina.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信