基于协方差矩阵参数先验的贝叶斯结构方程建模新方法

Haiyan Liu, Wen Qu, Zhiyong Zhang, Hao Wu
{"title":"基于协方差矩阵参数先验的贝叶斯结构方程建模新方法","authors":"Haiyan Liu, Wen Qu, Zhiyong Zhang, Hao Wu","doi":"10.35566/jbds/v2n2/p2","DOIUrl":null,"url":null,"abstract":"Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested in the prior distributions is hard to control, and (2) the MCMC iterative procedures naturally lead to Markov chains with serial dependence and the diagnostics of their convergence are often difficult. In this study, we present an alternative procedure for Bayesian SEM aiming to address the two challenges. In the new Bayesian SEM procedure, we specify a prior distribution on the population covariance matrix parameter $\\mathbf{\\Sigma}$ and obtain its posterior distribution $p(\\mathbf{\\Sigma}|\\text{data})$. We then construct a posterior distribution of model parameters $\\boldsymbol{\\theta}$ in the hypothetical SEM model by transforming the posterior distribution of $\\mathbf{\\Sigma}$ to a distribution of model parameter $\\boldsymbol{\\theta}$. The new procedure eases the practice of Bayesian SEM significantly and has a better control over the information nested in the prior distribution. We evaluated its performance through a simulation study and demonstrate its application through an empirical example.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Bayesian Structural Equation Modeling Approach with Priors on the Covariance Matrix Parameter\",\"authors\":\"Haiyan Liu, Wen Qu, Zhiyong Zhang, Hao Wu\",\"doi\":\"10.35566/jbds/v2n2/p2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested in the prior distributions is hard to control, and (2) the MCMC iterative procedures naturally lead to Markov chains with serial dependence and the diagnostics of their convergence are often difficult. In this study, we present an alternative procedure for Bayesian SEM aiming to address the two challenges. In the new Bayesian SEM procedure, we specify a prior distribution on the population covariance matrix parameter $\\\\mathbf{\\\\Sigma}$ and obtain its posterior distribution $p(\\\\mathbf{\\\\Sigma}|\\\\text{data})$. We then construct a posterior distribution of model parameters $\\\\boldsymbol{\\\\theta}$ in the hypothetical SEM model by transforming the posterior distribution of $\\\\mathbf{\\\\Sigma}$ to a distribution of model parameter $\\\\boldsymbol{\\\\theta}$. The new procedure eases the practice of Bayesian SEM significantly and has a better control over the information nested in the prior distribution. We evaluated its performance through a simulation study and demonstrate its application through an empirical example.\",\"PeriodicalId\":93575,\"journal\":{\"name\":\"Journal of behavioral data science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of behavioral data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35566/jbds/v2n2/p2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v2n2/p2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

结构方程模型的贝叶斯推理(SEMs)在社会和心理科学中越来越受欢迎,因为它能够灵活地适应更复杂的模型,并且能够在可用的情况下包含先验信息。然而,在实践中使用传统的贝叶斯SEM存在两个主要障碍:(1)嵌套在先验分布中的信息难以控制;(2)MCMC迭代过程自然导致具有序列依赖性的马尔可夫链,其收敛性的诊断往往很困难。在这项研究中,我们提出了贝叶斯扫描电镜的替代程序,旨在解决这两个挑战。在新的贝叶斯扫描电镜过程中,我们指定总体协方差矩阵参数$\mathbf{\Sigma}$的先验分布,并得到其后验分布$p(\mathbf{\Sigma}|\text{data})$。然后,通过将模型参数$\boldsymbol{\theta}$的后验分布转化为模型参数$\mathbf{\Sigma}$的后验分布,在假设的SEM模型中构造模型参数$\boldsymbol{\theta}$的后验分布。新方法大大简化了贝叶斯扫描电镜的实践,并对嵌套在先验分布中的信息有更好的控制。通过仿真研究对其性能进行了评价,并通过实例验证了其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Bayesian Structural Equation Modeling Approach with Priors on the Covariance Matrix Parameter
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested in the prior distributions is hard to control, and (2) the MCMC iterative procedures naturally lead to Markov chains with serial dependence and the diagnostics of their convergence are often difficult. In this study, we present an alternative procedure for Bayesian SEM aiming to address the two challenges. In the new Bayesian SEM procedure, we specify a prior distribution on the population covariance matrix parameter $\mathbf{\Sigma}$ and obtain its posterior distribution $p(\mathbf{\Sigma}|\text{data})$. We then construct a posterior distribution of model parameters $\boldsymbol{\theta}$ in the hypothetical SEM model by transforming the posterior distribution of $\mathbf{\Sigma}$ to a distribution of model parameter $\boldsymbol{\theta}$. The new procedure eases the practice of Bayesian SEM significantly and has a better control over the information nested in the prior distribution. We evaluated its performance through a simulation study and demonstrate its application through an empirical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信