{"title":"采用无刷直流电机驱动的电动汽车用二电平和三电平多电平逆变器的对比分析","authors":"Bharathi Sankar Ammaiyappan, Seyezhai Ramalingam","doi":"10.1108/cw-08-2020-0186","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe conventional two-level inverter suffers from harmonics, higher direct current (DC) link voltage requirement, higher dv/dt and heating of the rotor. This study aims to overcome by using a multilevel inverter for brushless DC (BLDC) drive.\n\n\nDesign/methodology/approach\nThis paper presents a comparative analysis of the conventional two-level and three-level multilevel inverter for electric vehicle (EV) application using BLDC drive.\n\n\nFindings\nA three-level Active Neutral Point Clamped Multilevel inverter (ANPCMLI) is proposed in this paper which provides DC link voltage control. Simulation studies of the multilevel inverter and BLDC motor is carried out in MATLAB.\n\n\nOriginality/value\nThe ANPCMLI fed BLDC simulation results shows that there is the significant reduction in the BLDC motor torque ripple, switching stress and harmonic distortion in the BLDC motor fed ANPCMLI compared to the conventional two-level inverter. A prototype of ANPCMLI fed BLDC drive along with field programmable gate array (FPGA) control is built and MATLAB simulation results are verified experimentally.\n","PeriodicalId":50693,"journal":{"name":"Circuit World","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative analysis of two-level and three-level multilevel inverter for electric vehicle application using BLDC motor drive\",\"authors\":\"Bharathi Sankar Ammaiyappan, Seyezhai Ramalingam\",\"doi\":\"10.1108/cw-08-2020-0186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe conventional two-level inverter suffers from harmonics, higher direct current (DC) link voltage requirement, higher dv/dt and heating of the rotor. This study aims to overcome by using a multilevel inverter for brushless DC (BLDC) drive.\\n\\n\\nDesign/methodology/approach\\nThis paper presents a comparative analysis of the conventional two-level and three-level multilevel inverter for electric vehicle (EV) application using BLDC drive.\\n\\n\\nFindings\\nA three-level Active Neutral Point Clamped Multilevel inverter (ANPCMLI) is proposed in this paper which provides DC link voltage control. Simulation studies of the multilevel inverter and BLDC motor is carried out in MATLAB.\\n\\n\\nOriginality/value\\nThe ANPCMLI fed BLDC simulation results shows that there is the significant reduction in the BLDC motor torque ripple, switching stress and harmonic distortion in the BLDC motor fed ANPCMLI compared to the conventional two-level inverter. A prototype of ANPCMLI fed BLDC drive along with field programmable gate array (FPGA) control is built and MATLAB simulation results are verified experimentally.\\n\",\"PeriodicalId\":50693,\"journal\":{\"name\":\"Circuit World\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuit World\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/cw-08-2020-0186\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuit World","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/cw-08-2020-0186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Comparative analysis of two-level and three-level multilevel inverter for electric vehicle application using BLDC motor drive
Purpose
The conventional two-level inverter suffers from harmonics, higher direct current (DC) link voltage requirement, higher dv/dt and heating of the rotor. This study aims to overcome by using a multilevel inverter for brushless DC (BLDC) drive.
Design/methodology/approach
This paper presents a comparative analysis of the conventional two-level and three-level multilevel inverter for electric vehicle (EV) application using BLDC drive.
Findings
A three-level Active Neutral Point Clamped Multilevel inverter (ANPCMLI) is proposed in this paper which provides DC link voltage control. Simulation studies of the multilevel inverter and BLDC motor is carried out in MATLAB.
Originality/value
The ANPCMLI fed BLDC simulation results shows that there is the significant reduction in the BLDC motor torque ripple, switching stress and harmonic distortion in the BLDC motor fed ANPCMLI compared to the conventional two-level inverter. A prototype of ANPCMLI fed BLDC drive along with field programmable gate array (FPGA) control is built and MATLAB simulation results are verified experimentally.
期刊介绍:
Circuit World is a platform for state of the art, technical papers and editorials in the areas of electronics circuit, component, assembly, and product design, manufacture, test, and use, including quality, reliability and safety. The journal comprises the multidisciplinary study of the various theories, methodologies, technologies, processes and applications relating to todays and future electronics. Circuit World provides a comprehensive and authoritative information source for research, application and current awareness purposes.
Circuit World covers a broad range of topics, including:
• Circuit theory, design methodology, analysis and simulation
• Digital, analog, microwave and optoelectronic integrated circuits
• Semiconductors, passives, connectors and sensors
• Electronic packaging of components, assemblies and products
• PCB design technologies and processes (controlled impedance, high-speed PCBs, laminates and lamination, laser processes and drilling, moulded interconnect devices, multilayer boards, optical PCBs, single- and double-sided boards, soldering and solderable finishes)
• Design for X (including manufacturability, quality, reliability, maintainability, sustainment, safety, reuse, disposal)
• Internet of Things (IoT).