泛型对象应该是什么?

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Jonathan Sterling
{"title":"泛型对象应该是什么?","authors":"Jonathan Sterling","doi":"10.1017/S0960129523000117","DOIUrl":null,"url":null,"abstract":"Abstract Jacobs has proposed definitions for (weak, strong, split) generic objects for a fibered category; building on his definition of (split) generic objects, Jacobs develops a menagerie of important fibrational structures with applications to categorical logic and computer science, including higher order fibrations, polymorphic fibrations, \n$\\lambda2$\n -fibrations, triposes, and others. We observe that a split generic object need not in particular be a generic object under the given definitions, and that the definitions of polymorphic fibrations, triposes, etc. are strict enough to rule out some fundamental examples: for instance, the fibered preorder induced by a partial combinatory algebra in realizability is not a tripos in this sense. We propose a new alignment of terminology that emphasizes the forms of generic object appearing most commonly in nature, i.e. in the study of internal categories, triposes, and the denotational semantics of polymorphism. In addition, we propose a new class of acyclic generic objects inspired by recent developments in higher category theory and the semantics of homotopy type theory, generalizing the realignment property of universes to the setting of an arbitrary fibration.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"33 1","pages":"46 - 67"},"PeriodicalIF":0.4000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What should a generic object be?\",\"authors\":\"Jonathan Sterling\",\"doi\":\"10.1017/S0960129523000117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Jacobs has proposed definitions for (weak, strong, split) generic objects for a fibered category; building on his definition of (split) generic objects, Jacobs develops a menagerie of important fibrational structures with applications to categorical logic and computer science, including higher order fibrations, polymorphic fibrations, \\n$\\\\lambda2$\\n -fibrations, triposes, and others. We observe that a split generic object need not in particular be a generic object under the given definitions, and that the definitions of polymorphic fibrations, triposes, etc. are strict enough to rule out some fundamental examples: for instance, the fibered preorder induced by a partial combinatory algebra in realizability is not a tripos in this sense. We propose a new alignment of terminology that emphasizes the forms of generic object appearing most commonly in nature, i.e. in the study of internal categories, triposes, and the denotational semantics of polymorphism. In addition, we propose a new class of acyclic generic objects inspired by recent developments in higher category theory and the semantics of homotopy type theory, generalizing the realignment property of universes to the setting of an arbitrary fibration.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"33 1\",\"pages\":\"46 - 67\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0960129523000117\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0960129523000117","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要Jacobs提出了纤维范畴的(弱、强、分裂)泛型对象的定义;在他对(分裂)泛型对象的定义的基础上,Jacobs开发了一系列重要的fibrational结构,并将其应用于分类逻辑和计算机科学,包括高阶fibrations、多态fibrations,$\lambda2$-fibrations和triposes等。我们观察到,在给定的定义下,分裂的泛型对象不一定是泛型对象,多态fibrations、tripoles等的定义足够严格,可以排除一些基本的例子:例如,在可实现性中由部分组合代数诱导的fibed预序在这个意义上不是tripols。我们提出了一种新的术语组合,强调在自然界中最常见的一般对象的形式,即在研究内部类别、三元组和多态性的指称语义时。此外,受高等范畴理论和同源类型理论语义的最新发展的启发,我们提出了一类新的非循环泛型对象,将普遍性的重排性质推广到任意fibration的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What should a generic object be?
Abstract Jacobs has proposed definitions for (weak, strong, split) generic objects for a fibered category; building on his definition of (split) generic objects, Jacobs develops a menagerie of important fibrational structures with applications to categorical logic and computer science, including higher order fibrations, polymorphic fibrations, $\lambda2$ -fibrations, triposes, and others. We observe that a split generic object need not in particular be a generic object under the given definitions, and that the definitions of polymorphic fibrations, triposes, etc. are strict enough to rule out some fundamental examples: for instance, the fibered preorder induced by a partial combinatory algebra in realizability is not a tripos in this sense. We propose a new alignment of terminology that emphasizes the forms of generic object appearing most commonly in nature, i.e. in the study of internal categories, triposes, and the denotational semantics of polymorphism. In addition, we propose a new class of acyclic generic objects inspired by recent developments in higher category theory and the semantics of homotopy type theory, generalizing the realignment property of universes to the setting of an arbitrary fibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信