{"title":"泛型对象应该是什么?","authors":"Jonathan Sterling","doi":"10.1017/S0960129523000117","DOIUrl":null,"url":null,"abstract":"Abstract Jacobs has proposed definitions for (weak, strong, split) generic objects for a fibered category; building on his definition of (split) generic objects, Jacobs develops a menagerie of important fibrational structures with applications to categorical logic and computer science, including higher order fibrations, polymorphic fibrations, \n$\\lambda2$\n -fibrations, triposes, and others. We observe that a split generic object need not in particular be a generic object under the given definitions, and that the definitions of polymorphic fibrations, triposes, etc. are strict enough to rule out some fundamental examples: for instance, the fibered preorder induced by a partial combinatory algebra in realizability is not a tripos in this sense. We propose a new alignment of terminology that emphasizes the forms of generic object appearing most commonly in nature, i.e. in the study of internal categories, triposes, and the denotational semantics of polymorphism. In addition, we propose a new class of acyclic generic objects inspired by recent developments in higher category theory and the semantics of homotopy type theory, generalizing the realignment property of universes to the setting of an arbitrary fibration.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"33 1","pages":"46 - 67"},"PeriodicalIF":0.4000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What should a generic object be?\",\"authors\":\"Jonathan Sterling\",\"doi\":\"10.1017/S0960129523000117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Jacobs has proposed definitions for (weak, strong, split) generic objects for a fibered category; building on his definition of (split) generic objects, Jacobs develops a menagerie of important fibrational structures with applications to categorical logic and computer science, including higher order fibrations, polymorphic fibrations, \\n$\\\\lambda2$\\n -fibrations, triposes, and others. We observe that a split generic object need not in particular be a generic object under the given definitions, and that the definitions of polymorphic fibrations, triposes, etc. are strict enough to rule out some fundamental examples: for instance, the fibered preorder induced by a partial combinatory algebra in realizability is not a tripos in this sense. We propose a new alignment of terminology that emphasizes the forms of generic object appearing most commonly in nature, i.e. in the study of internal categories, triposes, and the denotational semantics of polymorphism. In addition, we propose a new class of acyclic generic objects inspired by recent developments in higher category theory and the semantics of homotopy type theory, generalizing the realignment property of universes to the setting of an arbitrary fibration.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"33 1\",\"pages\":\"46 - 67\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0960129523000117\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0960129523000117","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract Jacobs has proposed definitions for (weak, strong, split) generic objects for a fibered category; building on his definition of (split) generic objects, Jacobs develops a menagerie of important fibrational structures with applications to categorical logic and computer science, including higher order fibrations, polymorphic fibrations,
$\lambda2$
-fibrations, triposes, and others. We observe that a split generic object need not in particular be a generic object under the given definitions, and that the definitions of polymorphic fibrations, triposes, etc. are strict enough to rule out some fundamental examples: for instance, the fibered preorder induced by a partial combinatory algebra in realizability is not a tripos in this sense. We propose a new alignment of terminology that emphasizes the forms of generic object appearing most commonly in nature, i.e. in the study of internal categories, triposes, and the denotational semantics of polymorphism. In addition, we propose a new class of acyclic generic objects inspired by recent developments in higher category theory and the semantics of homotopy type theory, generalizing the realignment property of universes to the setting of an arbitrary fibration.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.