M. Sarkarfarshi, Chris Ladubec, R. Gracie, M. Dusseault, W. Leiss, D. Krewski
{"title":"与四个北美碳捕获和封存项目相关的潜在技术危害","authors":"M. Sarkarfarshi, Chris Ladubec, R. Gracie, M. Dusseault, W. Leiss, D. Krewski","doi":"10.1504/ijram.2019.103341","DOIUrl":null,"url":null,"abstract":"Carbon capture and storage (CCS) risks depend upon the site geology, potential CO2-caprock reactions, anthropogenic pathways (legacy wellbores), and well construction and operation. Herein, we assess the major risks, termed 'georisks', acknowledging that quantitative description must be site-specific, although pathway impact generalisations are possible. We discuss geological and pathway issues to guide general site selection practices to reduce georisks. Events that trigger hazards and the consequences are presented for leakage, low storage capacity/injectivity, the release of hazardous gases and materials, surface uplift, and Induced seismicity. A supplementary literature-sourced hazard tabulation was developed with focus on four large-scale North American CCS projects (Quest Project, Weyburn Project, Project Pioneer and FutureGen). Each hazard is classified based on the project phase and trigger activity. The risks of CO2, brine, or other fluid leakage through wells (injection, monitoring, decommissioned legacy wells) remain uncertain, but legacy well gas leakage is common, rather than exceptional, despite modern cementing and completion practices.","PeriodicalId":35420,"journal":{"name":"International Journal of Risk Assessment and Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijram.2019.103341","citationCount":"2","resultStr":"{\"title\":\"Potential technical hazards associated with four North American carbon capture and sequestration projects\",\"authors\":\"M. Sarkarfarshi, Chris Ladubec, R. Gracie, M. Dusseault, W. Leiss, D. Krewski\",\"doi\":\"10.1504/ijram.2019.103341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon capture and storage (CCS) risks depend upon the site geology, potential CO2-caprock reactions, anthropogenic pathways (legacy wellbores), and well construction and operation. Herein, we assess the major risks, termed 'georisks', acknowledging that quantitative description must be site-specific, although pathway impact generalisations are possible. We discuss geological and pathway issues to guide general site selection practices to reduce georisks. Events that trigger hazards and the consequences are presented for leakage, low storage capacity/injectivity, the release of hazardous gases and materials, surface uplift, and Induced seismicity. A supplementary literature-sourced hazard tabulation was developed with focus on four large-scale North American CCS projects (Quest Project, Weyburn Project, Project Pioneer and FutureGen). Each hazard is classified based on the project phase and trigger activity. The risks of CO2, brine, or other fluid leakage through wells (injection, monitoring, decommissioned legacy wells) remain uncertain, but legacy well gas leakage is common, rather than exceptional, despite modern cementing and completion practices.\",\"PeriodicalId\":35420,\"journal\":{\"name\":\"International Journal of Risk Assessment and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijram.2019.103341\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Risk Assessment and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijram.2019.103341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Risk Assessment and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijram.2019.103341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
Potential technical hazards associated with four North American carbon capture and sequestration projects
Carbon capture and storage (CCS) risks depend upon the site geology, potential CO2-caprock reactions, anthropogenic pathways (legacy wellbores), and well construction and operation. Herein, we assess the major risks, termed 'georisks', acknowledging that quantitative description must be site-specific, although pathway impact generalisations are possible. We discuss geological and pathway issues to guide general site selection practices to reduce georisks. Events that trigger hazards and the consequences are presented for leakage, low storage capacity/injectivity, the release of hazardous gases and materials, surface uplift, and Induced seismicity. A supplementary literature-sourced hazard tabulation was developed with focus on four large-scale North American CCS projects (Quest Project, Weyburn Project, Project Pioneer and FutureGen). Each hazard is classified based on the project phase and trigger activity. The risks of CO2, brine, or other fluid leakage through wells (injection, monitoring, decommissioned legacy wells) remain uncertain, but legacy well gas leakage is common, rather than exceptional, despite modern cementing and completion practices.
期刊介绍:
The IJRAM is an interdisciplinary and refereed journal that provides cross learning between: - Different business and economics, as well as scientific and technological, disciplines - Energy industries, environmental and ecological systems - Safety, public health and medical services - Software services, reliability and safety