(次)黎曼流形上kirchhoff型能量泛函的下半连续性和谱隙

IF 0.7 4区 数学 Q2 MATHEMATICS
Csaba Farkas, S. Kajántó, C. Varga
{"title":"(次)黎曼流形上kirchhoff型能量泛函的下半连续性和谱隙","authors":"Csaba Farkas, S. Kajántó, C. Varga","doi":"10.12775/tmna.2022.034","DOIUrl":null,"url":null,"abstract":"In this paper we characterize the sequentially weakly lower semicontinuity\nof the parameter-depending energy functional associated with the critical Kirchhoff\nproblem in context of (sub)Riemannian manifolds.\nWe also present some spectral gap and convexity results.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower semicontinuity of Kirchhoff-type energy functionals and spectral gaps on (sub)Riemannian manifolds\",\"authors\":\"Csaba Farkas, S. Kajántó, C. Varga\",\"doi\":\"10.12775/tmna.2022.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we characterize the sequentially weakly lower semicontinuity\\nof the parameter-depending energy functional associated with the critical Kirchhoff\\nproblem in context of (sub)Riemannian manifolds.\\nWe also present some spectral gap and convexity results.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.034\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在(子)黎曼流形中,我们刻画了与临界Kirchhoff问题相关的依赖于参数的能量泛函的顺序弱下半连续性。我们还给出了一些谱间隙和凸性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower semicontinuity of Kirchhoff-type energy functionals and spectral gaps on (sub)Riemannian manifolds
In this paper we characterize the sequentially weakly lower semicontinuity of the parameter-depending energy functional associated with the critical Kirchhoff problem in context of (sub)Riemannian manifolds. We also present some spectral gap and convexity results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信